

DOI: 10.5137/1019-5149.JTN.19659-16.0 Received: 13.12.2016 / Accepted: 26.01.2017 Published Online: 01.03.2017

Review

Prognostic Role of Perihematomal Edema in Intracerebral Hemorrhage: A Systematic Review

Zhiyuan YU*, Lu MA*, Jun ZHENG*, Chao YOU

West China Hospital, Sichuan University, Department of Neurosurgery, Chengdu, China

*Zhiyuan YU, Lu MA and Jun ZHENG contributed equally to this work.

ABSTRACT

Although several studies have suggested perihematomal edema (PHE) is associated with prognosis in intracerebral hemorrhage (ICH), the results are different in other studies. The purpose of this study was to evaluate the prognostic role of PHE in ICH. According to PRISMA guidelines, a systematic literature search of PubMed, EMBASE, SCOPUS, Web of Science and Cochrane Library was performed. Published clinical studies reporting association between PHE and prognosis in ICH were included. Data were extracted including sample size, patient characteristics, PHE measures, outcome measures and follow-up. A total of 21 studies were included with 6 prospective studies and 15 retrospective studies. PHE measures included perihematomal edema absolute volume (PHEAV), relative perihematomal edema volume (rPHE), perihematomal edema absolute volume growth (PHEAV growth), perihematomal edema expansion rate (PHEER), relative perihematomal edema growth (relative PHE growth), cytotoxic edema (CE) and perihematomal edema absolute area (PHEAA). The association of PHEAV/ rPHE /PHEAV growth and outcome are conflicting in different studies. Meta-analysis showed PHEER at 72 hours was significantly associated with poor clinical outcome at 90 days (OR=1.54, 95%CI 1.04-2.22, p<0.001). This study suggests the measures and time points for PHE and outcome are various in previous studies. The prognostic values of PHEAV, rPHE, PHEAV growth and other measures are still controversial. PHEER is likely a prognostic predictor for ICH. Further studies with larger sample size, more accurate measures and more time points are needed to investigate the prognostic role of PHE in ICH and the optimal PHE measure to predict outcome in ICH.

KEYWORDS: Perihematomal edema, Intracerebral hemorrhage, Prognosis

INTRODUCTION

Intracerebral hemorrhage (ICH) is a severe type of stroke and accounts for about 10-15% of all strokes (43). Patients with ICH have high risk of severe disability or death (20). Cerebral injury secondary to ICH includes several complex mechanisms. Direct destruction and mass effect of hematoma bring primary injury to brain tissue at the beginning of ICH (13). Hematoma expansion further aggravates the primary injury (26). Inflammation, thrombin activation and erythrocyte lysis caused by primary injury lead to breakdown of brain blood barrier (BBB) and swelling of brain cells, which results in formation of perihematomal edema (PHE)(50). Thrombin

Corresponding author: Chao YOU E-mail: youchaowchscu@163.com formation induces BBB disruption and parenchymal cell death, which induces PHE formation in ICH (17). After erythrocyte lysis and hemoglobin release, AQP4 upregulation affected by the increased iron concentration has an important role in PHE (28). Complement activation rapidly induces downstream pathways of cerebral injury, which is correlated to formation of PHE (7). PHE can cause mass effect, which brings further cerebral injury (29). PHE is related to many factors, such as initial ICH volume, genetic variation, blood pressure, hyperglycemia and body temperature (42). PHE has been considered as an important target for treatment of ICH (16). New approaches aimed at PHE are hoped to improve prognosis of ICH patients (5,9,33). Although many previous

studies have suggested PHE may be associated with clinical outcome in ICH, the PHE measures are various and the results are conflicting (2,8,11,46,47). Thus, we conducted this systematic review to evaluate the prognostic role of PHE in ICH.

MATERIAL and METHODS

Search Strategy

A prespecified protocol following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement was followed. Two researchers (Zhiyuan YU & Lu MA) independently searched literature in the PubMed (1958 to present), EMBASE (1980 to present), SCOPUS (1966 to present), Web of Science (1970 to present) and Cochrane Library on July 20, 2016. Our search strategy was combined by key words as following: "intracerebral hemorrhage" or "cerebral hemorrhage" or "intracerebral haemorrhage" or "cerebral haemorrhage" or "brain haemorrhage" or "brain haemorrhage" or "hemorrhagic stroke" or "haemorrhagic stroke" or "ICH" and "perihaematomal edema" or "perihaematomal oedema" or "perihematomal edema" or "perihematomal oedema" or "perihemorrhagic edema" or "perihaemorrhagic oedema" or "perihaemorrhagic edema" or "perihemorrhagic oedema" or "PHE" or "PHO" and "outcome" or "prognosis" or "predictor" or "mortality" or "death" or "disability" or "dependence" or "deterioration". MeSH terms were also adapted according to different indexing for each database. References of selected publications were also searched for potential literature. No language restrictions were set in our strategy.

Study Selection

The eligibility criteria for this systematic review were defined as following:

- 1. Published clinical studies in adult human beings
- 2. Sample size \geq 20 patients
- 3. ICH diagnosed by computed tomography (CT) or Magnetic Resonance Imaging (MRI)
- 4. Evaluating the association between PHE and prognosis in ICH
- 5. Providing detailed method to evaluate PHE and prognosis
- 6. Providing credible data for PHE and prognosis.

Titles and abstracts of all included literature were screened by two reviewers independently. Full-text articles were obtained if studies were considered as potentially related to the association between PHE and prognosis by at least one reviewer. Full-text articles were screened by both reviewers for inclusion. If disagreement occurred, it would be resolved by the help of a third reviewer. Quality of study and risk of bias were evaluated by two reviewers (34).

Data Extraction

All relevant data were extracted by two reviewers independently with a standardized data abstraction form. All data were checked by the third reviewer for accuracy. Any possible disagreement of data was solved by consensus of three reviewers. If different publications described the same group of patients, all publications were reviewed and the most representative one would be included. The following data were collected from each study: author, publication year, study design, sample size, study duration, inclusion/exclusion criteria, patient characteristics, PHE measures, outcome measures and follow-up.

Statistical Analysis

Because of the various measures for PHE and prognosis, we carefully considered if the meta-analysis was feasible. We decided if the meta-analysis was appropriate for each measure of PHE and prognosis by consensus. The evaluation of feasibility for meta-analysis was based on the methodology for meta-analysis of observational studies (10). If the metaanalysis was not appropriate to evaluate the association, we used the descriptive way to describe the results.

Our analyses focused on the association between PHE and outcome in ICH. All measures for PHE in included studies were analyzed. Only studies reporting odds ratios (OR) and 95% confidence intervals (CIs) for the effect of a defined increment were included in meta-analysis (10). If adjusted ORs for confounding factors in multivariable analyses were available, we used the adjusted OR and 95% CI in the meta-analysis. Pooled ORs, 95%Cls, p values and Higgins I² were calculated. If I²>50%, we considered substantial heterogeneity existed between results of included studies. When no substantial heterogeneity existed, we used Woolf's method based on the fixed-effects model to calculate the pooled estimate; otherwise, we used the Der Simonian and Laird method based on the random-effects model (12). All statistical analysis was performed using STATA version 12.0 software (StataCorp., College Station, TX). If p<0.05, it was considered as statistical significance.

RESULTS

A total of 21 studies between 1999 and 2016 were included from 805 original citations in 5 databases (Figure 1). Although data resource of Arima's and Yang's studies were both from INTERACT studies (2,47), the measures for PHE were different, so both of them were included. In these 21 studies, 6 were prospective studies (3,11,19,21,39,45), and 15 were retrospective studies (1,2,8,18,23,27,30-32,35,36,40,46,47,52). Sample size ranged from 21 to 1310 patients. Sixteen studies assessed PHE with CT scan (1-3,8,11,18,21,23,27,30,31,35,40,46,47,52), 3 studies used MRI (19,39,45), and 2 (32,36) studies had CT or MRI results to evaluate PHE (Table I).

Measures for PHE were various in 21 included studies. Perihematomal edema absolute volume (PHEAV) was accessed in 16 studies (1,3,8,11,18,19,21,23,27,30-32,35,39,40,46), relative perihematomal edema volume (rPHE) was evaluated in 8 studies (1,8,11,23,35,36,45,46), 7 studies used perihematomal edema absolute volume growth (PHEAV growth) (2,23,35,45,47,52), 2 studies adopted perihematomal edema expansion rate (PHEER) (23,40), relative perihematomal edema growth

Study	n	Study Design	Study Duration	Neuro- imaging	PHE Measures	Outcome Measures Functional Outcome	
Appelboom et al. (2013) (1)	133	Retrospective Study	Feb. 2009-Jun. 2011	СТ	PHEAV & rPHE		
Arima et al. (2009) (2)	270	Retrospective Study	Nov. 2005- Apr. 2007	СТ	PHEAV Growth & relative PHE Growth	Functional Outcome & Death	
Bakhshayesh et al. (2014) (3)	98	Prospective Study	Jan. 2010-Jan. 2011	СТ	PHEAV	Death	
Gebel et al. (2002) (8)	103	Retrospective Study	1989-1994	СТ	PHEAV & rPHE	Functional Outcome	
Gupta et al. (2014) (11)	44	Prospective Study	Oct. 2010-Aug. 2012	СТ	PHEAV & rPHE	Functional Outcome	
Levine et al. (2007) (18)	98	Retrospective Study	Oct. 1998-Jun. 2004	СТ	PHEAV	Death	
Li et al. (2013) (19)	21	Prospective Study	Not Mentioned	MRI	PHEAV & CE	Functional Outcome	
McCarron et al. (1999) (21)	192	Prospective Study	Not Mentioned	СТ	PHEAV	Death	
Murthy et al. (2016) (23)	596	Retrospective Study	Not Mentioned	СТ	PHEAV & rPHE & PHEAV Growth & PHEER	Functional Outcome & Death	
Ozdinc et al. (2016) (27)	106	Retrospective Study	Jan. 2012-Feb. 2015	СТ	PHEAV & PHEAA	Death	
Rodriguez-Luna et al. (2016) (30)	322	Retrospective Study	Jun. 2006-Sep. 2010	СТ	PHEAV	Functional Outcome & END	
Sansing et al. (2003) (31)	80	Retrospective Study	Jan. 1996-Dec. 1996	СТ	PHEAV	Discharge Disposition	
Sansing et al. (2011) (32)	287	Retrospective Study	Not Mentioned	CT/ MRI	PHEAV	Functional Outcome	
Staykov et al. (2011) (35)	219	Retrospective Study	Jan. 2006-Dec. 2009	СТ	PHEAV&rPHE& PHEAV Growth	Death	
Sykora et al. (2009) (36)	38	Retrospective Study	Oct. 2006-Dec. 2007	CT/ MRI	rPHE	END	
Tsai et al. (2011) (39)	56	Prospective Study	Not Mentioned	MRI	PHEAV & CE	Functional Outcome	
Urday et al. (2016) (40)	139	Retrospective Study	2000-2013	СТ	PHEAV & PHEER	Functional Outcome a Death	
Venkatasubramani- an et al. (2011) (45)	27	Prospective Study	Not Mentioned	MRI	rPHE & PHEAV Growth & relative PHE Growth	n Functional Outcome & Death	
Volbers et al. (2016) (46)	220	Retrospective Study	Jan. 2006-Feb. 2010	СТ	PHEAV & rPHE & PHEAV Growth	Functional Outcome	
Yang et al. (2015) (47)	1310	Retrospective Study	Nov. 2005-Aug. 2012	СТ	PHEAV Growth	Functional Outcome & Death	
Zubkov et al. (2008) (52)	88	Retrospective Study	Jan. 1997-Dec. 2005	СТ	PHEAV Growth	Functional Outcome & Death	

Table I: Included Studies Evaluating Association Between PHE and Outcome in ICH

PHE: Perihematomal edema, CT: Computed tomography, MRI: Magnetic resonance imaging, PHEAV: Perihematomal edema absolute volume, rPHE: Relative perihematomal edema volume, PHEAV growth: Perihematomal edema absolute volume growth, PHEER: Perihematomal edema expansion rate, relative PHE growth: Relative perihematomal edema growth, CE: Cytotoxic edema, PHEAA: Perihematomal edema absolute area, END: Early neurological deterioration.

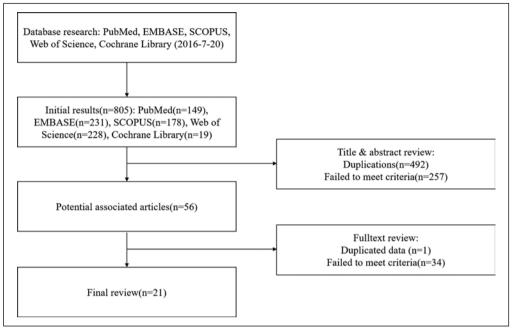


Figure 1: Study selection.

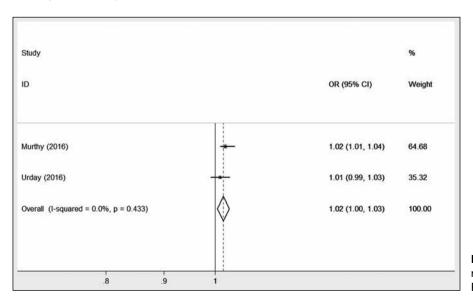
(relative PHE growth) was used in 2 studies (2,45), 2 studies accessed cytotoxic edema (CE) (19,39), and perihematomal edema absolute area (PHEAA) was evaluated in 1 study (27). PHE measures had different time points in these studies (Table II).

In 21 included studies, 14 studies evaluated functional outcome (1,2,8,11,19,23,30,32,39,40,45-47,52). Modified Rankin Scale (mRS) was used in all these 14 studies. Barther Index (BI) was adopted in 2 studies (8,45). Death was accessed in 11 studies (2,3,18,21,23,27,35,40,45,47,52). Early neurological deterioration (END) was evaluated in 2 studies (30,36). Discharge disposition was used in 1 study (31). There were also various time points for outcome assessment (Table III).

PHEAV and Outcome in ICH

A total of 8 studies discussed the association between baseline PHEAV and functional outcome in ICH (1,8,11,23,30,32,39,46). Because of insufficient studies with consistent outcome measure, a meta-analysis was not performed. In Appelboom's study, PHEAV was showed to be a significant predictor of short-term poor outcome (mRS>3) in ICH patients, especially in those with smaller ICH (\leq 30 cm³) (1). Volbers et al. showed baseline PHEAV was significantly higher in those with poor outcome (mRS>3) at discharge (46). Rodriguez-Luna et al. found baseline PHEAV was higher in patients with a poor 90-day outcome (mRS≥3) (30). In Sansing's study, baseline PHEAV was found to be independently associated with worse clinical outcome (32). However, other 4 studies did not show a significant association between baseline PHEAV and functional outcome (8,11,23,39).

The association between PHEAV at 72 hours (72h)/3 days(3d) and functional outcome was evaluated in 3 studies (19,23,40).


Li's study showed 3d PHEAV was significantly larger in patients with unfavorable 90-day clinical outcome (mRS 4-6) (19). Murthy et al. found 72h PHEAV was significantly associated with poor outcome (mRS 3-6) at 90 days in multivariate analysis (23). In Urday's study, no significant association was found between 72h PHEAV and poor functional outcome (mRS>2) at 90 days (40). Meta-analysis of Murthy's and Urday's studies showed a significant association between 72h PHEAV and poor functional outcome at 90 days (OR=1.02, 95%CI 1.00-1.03, p=0.007) (Figure 2).

Six studies evaluated the association between baseline PHEAV and mortality in ICH (3,18,21,23,27,35). Bakhshayesh's study suggested baseline PHEAV could predict the risk of inhospital mortality (3). McCarron et al. found non-survivors had larger edema volumes (21). In Staykov's study, initial PHEAV was found to be significantly associated with inhospital mortality (35). Ozdinc's study showed baseline PHEAV was significantly higher in non-survivors at 30 days (27). Baseline PHEAV was found to be a significant predictor for 90-day mortality in Warfarin-related ICH in Levine's study (18). However, Murthy's study showed baseline PHEAV was not significantly associated with mortality at 90 days (23). Meta-analysis of Levine's and Murthy's studies did not find a significant association between baseline PHEAV and mortality at 90 days (OR=0.71, 95%CI 0.29-1.72, p=0.446) (Figure 3). The association between 72h PHEAV and 90-day mortality was assessed in 2 studies (23,40). In Murthy's study, there was no significant association between 72h PHEAV and 90day mortality (23). Urday's study showed 72h PHEAV was significantly associated with 90-day mortality in unadjusted analysis but insignificantly in adjusted analysis (40). Metaanalysis did not suggest significant association between 72h PHEAV and 90-day mortality (OR=1.02, 95%CI 0.99-1.04, p=0.180) (Figure 4).

Study	PHEAV	PHEAA	rPHE	PHEAV Growth	PHEER	rPHE Growth	CE
Appelboom et al. (2013) (1)	Baseline	/	Baseline	/	/	/	/
Arima et al. (2009) (2)	/	/	/	72h	/	72h	/
Bakhshayesh et al. (2014) (3)	Baseline	/	/	/	/	/	/
Gebel et al. (2002) (8)	Baseline	/	Baseline	/	/	/	/
Gupta et al. (2014) (11)	Baseline	/	Baseline	/	/	/	/
Levine et al. (2007) (18)	Baseline	/	/	/	/	/	/
Li et al. (2013) (19)	3d	/	/	/	/	/	3d
McCarron et al. (1999) (21)	Baseline	/	/	/	/	/	/
Murthy et al. (2016) (23)	Baseline & 72h	/	Baseline	72h	72h	/	/
Ozdinc et al. (2016) (27)	Baseline	Baseline	/	/	/	/	/
Rodriguez-Luna et al. (2016) (30)	Baseline	/	/	/	/	/	/
Sansing et al. (2003) (31)	Baseline	/	/	/	/	/	/
Sansing et al. (2011) (32)	Baseline	/	/	/	/	/	/
Staykov et al. (2011) (35)	Baseline	/	3d	3d	/	/	/
Sykora et al. (2009) (36)	/	/	72h	/	/	/	/
Tsai et al. (2011) (39)	Baseline	/	/	/	/	/	Baseline
Urday et al. (2016) (40)	72h	/	/	/	24h&72h	/	/
Venkatasubramanian et al. (2011) (45)	/	/	Peak	Peak	/	Peak	/
Volbers et al. (2016) (46)	Baseline & Peak	/	Peak	48h&Peak	/	/	/
Yang et al. (2015) (47)	/	/	/	24h	/	/	/
Zubkov et al. (2008) (52)	/	/	/	Peak	/	/	/

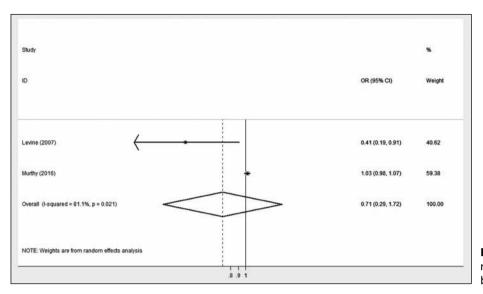
Table II: Time Points of PHE Measures in 21 Included Studies

PHE: Perihematomal edema, **PHEAV:** Perihematomal edema absolute volume, **rPHE:** Relative perihematomal edema volume, **PHEAV growth:** perihematomal edema absolute volume growth, **PHEER:** Perihematomal edema expansion rate, **relative PHE growth:** Relative perihematomal edema growth, **CE:** Cytotoxic edema, **PHEAA:** Perihematomal edema absolute area.

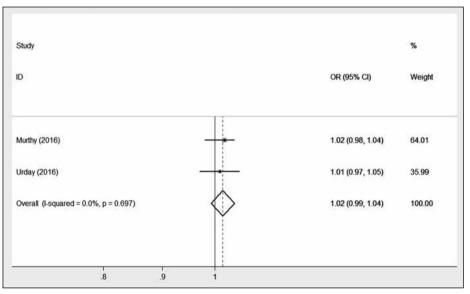
Figure 2: Meta-analysis of studies reporting an association between 72h PHEAV and poor 90-day outcome.

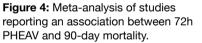
Study	Outcome 1	Unit	Follow-up time	Outcome 2	Unit	Follow-up time
Appelboom et al. (2013) (1)	Poor functional outcome	mRS(4-6)	Discharge/ 14 days	/	/	/
Arima et al. (2009) (2)	Poor functional outcome	mRS(3-6)	90 days	Death	Dead or alive	90 days
Bakhshayesh et al. (2014) (3)	Death	Dead or alive	Discharge	/	/	/
Gebel et al. (2002) (8)	Poor functional outcome	mRS(3-6)	12 weeks	Poor functional outcome	BI<80	12 weeks
Gupta et al. (2014) (11)	Poor functional outcome	mRS(3-6)	12 weeks	/	/	/
Levine et al. (2007) (18)	Death	Dead or alive	90 days	/	/	/
Li et al. (2013) (19)	Poor functional outcome	mRS(4-6)	90 days	/	/	/
McCarron et al. (1999) (21)	Death	Dead or alive	In-hospital	/	/	/
Murthy et al. (2016) (23)	Poor functional outcome	mRS(3-6)	90 days	Death	Dead or alive	90 days
Ozdinc et al. (2016) (27)	Death	Dead or alive	30 days	/	/	/
Rodriguez-Luna et al. (2016) (30)	Poor functional outcome	mRS(3-6)	90 days	END	NIHSS increase>4 or Death	24h
Sansing et al. (2003) (31)	Discharge Disposition	Good or poor	Discharge	/	/	/
Sansing et al. (2011) (32)	Poor functional outcome	mRS	90 days	/	/	/
Staykov et al. (2011) (35)	Death	Dead or alive	In-hospital	/	/	/
Sykora et al. (2009) (36)	END	NIHSS increase>4 or death	72h	/	/	/
Tsai et al. (2011) (39)	Poor functional outcome	mRS(3-6)	6 months	/	/	/
Urday et al. (2016) (40)	Poor functional outcome	mRS(3-6)	90 days	Death	Dead or alive	90 days
Venkatasubramanian et al. (2011) (45)	Functional outcome	mRS; NIHSS; eGOS; BI	3 months	Death	Dead or alive	3 months/6 months
Volbers et al. (2016) (46)	Poor functional outcome	mRS(4-6)	Discharge	/	/	/
Yang et al. (2015) (47)	Poor functional outcome	mRS(3-6)	90 days	Death	Dead or alive	90 days
Zubkov et al. (2008) (52)	Poor functional outcome	mRS(3-6)	Discharge/ 1 year	Death	Dead or alive	7 days

Table III: Outcome Measures in 21 Included Studies


mRS: Modified Rankin scale, BI: Barther Index, NIHSS: National Institute of Health stroke scale, eGOS: Extended Glasgow outcome scale.

Rodriguez-Luna's study found baseline PHEAV was higher in patients with END (30). Sansing et al. suggested baseline PHEAV was correlated with poor discharge disposition (31).


rPHE and Outcome in ICH


Association between baseline rPHE and functional outcome was assessed in 4 studies (1,8,11,23). Appelboom's study did not show a significant association between baseline rPHE and functional outcome at discharge (1). Increased baseline rPHE was found to be significantly associated with decreased probability of poor 12-week functional outcome (mRS>2) in Gebel's study (8). Gupta et al. suggested baseline rPHE was significantly associated with functional outcome (MRS \geq 3) at 3 months (11). However, no significant association between baseline rPHE and 90-day functional outcome (mRS3-6) was found in Murthy's study (23). Meta-analysis did not find a significant association between baseline rPHE and functional outcome at 90 days/12 weeks (OR=0.10, 95%Cl 0.01-1.91, p=0.127) (Figure 5).

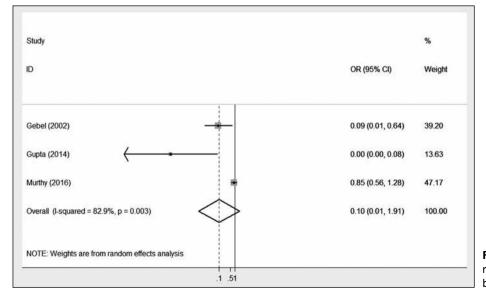

Two studies evaluated the association between peak rPHE and functional outcome and did not find significant association (45,46). Volber's study did not show a significant association between 48h rPHE and functional outcome (46). Associa-

Figure 3: Meta-analysis of studies reporting an association between baseline PHEAV and 90-day mortality.

Figure 5: Meta-analysis of studies reporting an association between baseline rPHE and poor 90-day outcome.

tion between rPHE and mortality was discussed in 3 studies (23,35,45), and no significant association was identified. 72h rPHE was found to be significantly associated with END in Sykora's study (36).

PHEAV Growth and Outcome in ICH

A total of 6 studies discussed the association between PHEAV growth and functional outcome in ICH (2,23,45-47,52). Volbers et al. found higher PHEAV growth between day 1 and day 2-3 in patients with poor outcome at discharge (46). Yang's study suggested 24h PHEAV growth has significant association with poor outcome (mRS3-6)(47). No significant association between PHEAV growth and functional outcome was found in Venkatasubramanian's and Zubkov's studies (45.52). Arima's study suggested 72h PHEAV growth was associated with poor functional outcome significantly in univariate analysis, but insignificant after adjustment of age, sex, randomized treatment, and log of baseline hematoma volume (2). A significant association between 72h PHEAV growth and poor functional outcome (mRS 3-6) at 90 days was found in Murthy's study (23). Meta-analysis of Arima's and Murthy's study did not show a significant association between 72h PHEAV growth and 90-day poor functional outcome (OR=1.35, 95%CI 0.81-2.26, p=0.255) (Figure 6).

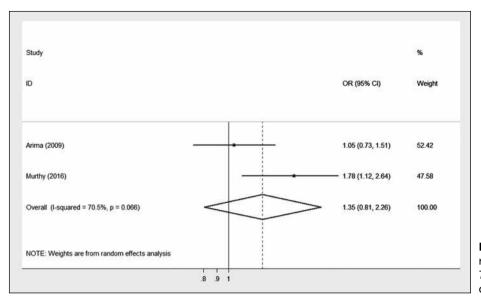
Association between PHEAV growth and mortality was assessed in 5 studies (2,23,35,47,52). PHEAV growth between Day 1 and Day 3 was found to be associated with in-hospital mortality significantly in Staykov's study (35). Murthy's study showed a significant association between 72h PHEAV growth and 90-day mortality (23). In Arima's study, 72h PHEAV growth was associated with 90-day mortality significantly in univariate analysis, but insignificantly after adjustment (2). No significant association between PHEAV growth and mortality was found in Yang's and Zubkov's studies (47,52).

PHEER and Outcome in ICH

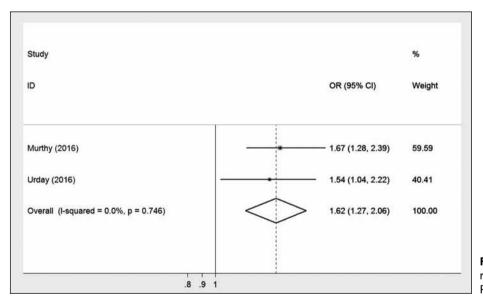
Association between PHEER and outcome in ICH was evaluated in 2 studies (23,40). Urday's study suggested 24h PHEER was significantly associated with worse mRS score and 72h PHEER was significantly associated with poor functional outcome (mRS 3-6) at 90 days (40). In Murthy's study, 72h PHEER was found to be significantly associated with poor functional outcome (mRS 3-6) and 90-day mortality (23). Meta-analysis showed the significant association between 72h PHEER and poor functional outcome (mRS 3-6) at 90 days (OR=1.62, 95%CI 1.27-2.06, p<0.001) (Figure 7).

Other PHE Measures and Outcome in ICH

Ozdinc's study showed perihematomal edema absolute area (PHEAA) was a simple value and an independent predictor for 30-day mortality (27). In Arima's study, 72h relative PHE growth was associated with poor functional outcome at 90 days significantly in univariate analysis but insignificantly after adjustment, and 72h relative PHE growth was not associated with 90-day mortality (2). No significant association was found between relative PHE growth (baseline to peak) and poor outcome at 3 months in Venkatasubramanian's study (45). Li's study suggested patients with CE at Day 3 tended to have


poor outcome at 90 days (19). In Tsai's study, CE was found to be significantly associated with poor clinical outcome at 6 months (39).

DISCUSSION


Most ICH patients have PHE during the course of the disease, which increases the mass effect (38). Early PHE starts after ictus of ICH and peaks at 4-5 days, which is mainly caused by vasogenic effect of pro-osmotic substances from the hematoma; delayed PHE lasts for about 2-4 weeks, which is affected by both vasogenic and cytotoxic effects (4). PHE increases significantly during first 24 hours after ictus of ICH (37). PHE is influenced by many factors, such as hematoma volume, hematoma expansion, intraventricular hemorrhage, hypertension and diabetes (15). Hematoma volume is correlative to PHE (22). It is reported that the association between hematoma volume and PHE increases in large hematomas and decreases in small hematomas over time (44,48,51). Ambient temperature has association with PHE volume in acute spontaneous ICH (49). PHE development in ICH is higher in diabetic patients (14). It is reported that statin use prior to ICH is related to decreased PHE (24). As more and more studies suggest PHE may be associated with outcome in ICH, new methods are developed to reduce PHE (16,48). However, although several studies suggest PHE is a prognostic factor for ICH, some other studies have different results. Moreover, different studies have different measures for PHE and the best measure for PHE is still uncertain. We performed this systematic review and meta-analysis to evaluate the prognostic value of different measures for PHE. Finally, a total of 21 studies were included in this systematic review and meta-analysis.

Most of the studies (16/21, 76.19%) evaluated PHE with CT scan. It is more difficult to measure PHE with CT scan because the boundaries of PHE become unclear during the course of ICH (45). It is also challenging to distinguish PHE from normal tissue and infarction which presents as perihematomal hypodensity (6). An approach based on a quantitative edgedetection algorithm was developed to improve the accuracy of PHE measurement based on CT scan (41). MRI is another neuroimaging method to determine PHE after ICH. Three (14.29%) studies determined PHE with MRI and 2 (9.52%) studies assessed PHE with results of CT or MRI. MRI can suggest significant perfusion delay and facilitated diffusion admixed with restricted diffusion in the region of PHE (25). ADC can suggest the existence of cytotoxic and vasogenic edema (39). Further studies should measure PHE accurately with both CT and MRI.

PHEAV is the most frequent measure for PHE (16/21, 76.19%). The time points in these studies are different and baseline PHEAV is assessed most frequently (14/16, 87.50%). Although 4 studies showed baseline PHEAV was significantly associated with functional outcome (1,30,32,46), other 4 studies did not have the same results (8,11,23,39). In 3 studies evaluating association between 72h PHEAV and functional outcome (19,23,40), 2 studies showed 72h PHEAV was significantly associated with functional outcome (19,23),

Figure 6: Meta-analysis of studies reporting an association between 72h PHEAV growth and poor 90-day outcome.

Figure 7: Meta-analysis of studies reporting an association between 72h PHEER and poor 90-day outcome.

while another study did not (40). Meta-analysis of Murthy's and Urday's studies (23,40) found a significant association between 72h PHEAV and functional outcome at 90 days. In 6 studies assessing the association between baseline PHEAV and mortality in ICH, 5 studies find the baseline PHEAV was significantly associated with mortality (3,18,21,27,35), but Murthy's study (23), and meta-analysis of Levine's and Murthy's studies (18,23) did not show the significant association. In 2 studies evaluating association between 72h PHEAV and 90day mortality, both results of 2 studies and meta-analysis suggest no significant association. It seems that PHEAV may have prognostic value for ICH patients PHEAV. However, the exact association needs more studies to confirm.

rPHE is defined as PHEAV divided by hematoma volume (8). A total of 8 (38.10%) studies evaluate the prognostic role of rPHE in ICH. In 4 studies discussing association between baseline rPHE and functional outcome (1,8,11,23), 2 studies suggest

significant association (8,11), while other 2 studies (1,23), and meta-analysis of 3 studies did not (8,11,23). No significant association between Peak/48h rPHE and functional outcome was found (45,46). No significant association between rPHE and mortality was showed (23,35,45). One study showed 72h rPHE was significantly associated with END (36). Further studies are needed to determine the association between rPHE and outcome in ICH.

In all 6 studies evaluating association between PHEAV growth and functional outcome (2,23,45-47,52), 3 studies suggested significant association (23,46,47), 2 studies showed no significant association (45,52), and 1 study (2) had different results before and after adjustment. Meta-analysis of 2 studies did not show significant association between 72h PHEAV growth (2,23), and 90-day poor functional outcome. 5 studies assessing the association between PHEAV growth and mortality in ICH (2,23,35,47,52). A significant association was found in 2 studies (23,35), while 2 studies (47,52) did not show a significant association. Different results were showed before and after adjustment in 1 study (2). The prognostic value of PHEAV growth in ICH is still uncertain.

PHEER is defined as (PHE at time point–PHE at baseline)/ (time to time point CT scan–time to baseline CT scan, hours) and unit is mL/hour (23). The prognostic value of PHEER in ICH was discussed in 2 studies. 24h PHEER was found to be associated with significantly worse mRS (40). The results of 2 studies (23,40), and meta-analysis suggested significant association between 72h PHEER and poor functional outcome at 90 days. 72h PHEER was also found to be associated with 90-day mortality significantly (23). PHEER seems to be an important predictor for outcome in ICH. Further studies are necessary to prove the prognostic role of PHEER in ICH.

Some other measures for PHE were also evaluated in included studies. PHEAA seems to be a predictor for outcome in ICH (27), but more studies are needed to confirm. Relative PHE growth was not found to be associated with the outcome in ICH (2,45). CE determined by MRI was found to be potential prognostic factor in ICH (19,39), but its prognostic value should be examined in more studies.

During the first 24 hours, PHE increases greatly (40). The rapid growth of PHE remains during next 48 hours and PHE has its peak volume at the average of 12 days (45). PHE has mass effects leading high intracranial pressure and even herniation, which may influence the clinical outcome in ICH (46). Moreover, the factors involved in PHE development represent several devastating processes for brain, such as thrombin formation, ervthrocyte lysis, hemoglobin toxicity and complement activation (50). Thus, PHE is considered to be associated with outcome, but the best measure for PHE to predict prognosis in ICH is still unclear (42). Some studies suggest PHEAV, rPHE and PHEAV growth are associated with outcome (1,8,47), and PHEER seems to be an important predictor for outcome in ICH patients (23,40). However, due to the complicated mechanism and process of PHE, further studies need more accurate PHE measures with more time points to investigate the prognostic value of PHE and the best PHE measure to predict outcome in ICH.

This systematic review has several limitations. First, different measures and time points for PHE and outcome were adapted in included studies, only studies with same measure, same time point and adjusted ORs were included in meta-analysis. Thus, the statistical power of meta-analysis was limited. Moreover, the meta-analysis was performed based on adjusted ORs instead of original data. Furthermore, the factors for adjustment in different studies were various, which brought confounders to the results.

CONCLUSION

This systematic review suggests that current evidence about prognostic role of PHE in ICH has high heterogeneity. The measures and time points for PHE and outcome are various. The prognostic values of PHEAV, rPHE, PHEAV growth and other measures are still controversial. PHEER seems to be a prognostic predictor for ICH. Further studies with larger sample size, more accurate measures and more time points are needed to investigate the prognostic role of PHE in ICH and the best PHE measure to predict outcome in ICH.

REFERENCES

- Appelboom G, Bruce SS, Hickman ZL, Zacharia BE, Carpenter AM, Vaughan KA, Duren A, Hwang RY, Piazza M, Lee K, Claassen J, Mayer S, Badjatia N, Connolly ES Jr: Volumedependent effect of perihaematomal oedema on outcome for spontaneous intracerebral haemorrhages. J Neurol Neurosurg Psychiatry 84(5): 488-493, 2013
- Arima H, Wang JG, Huang Y, Heeley E, Skulina C, Parsons MW, Peng B, Li Q, Su S, Tao QL, Li YC, Jiang JD, Tai LW, Zhang JL, Xu E, Cheng Y, Morgenstern LB, Chalmers J, Anderson CS; INTERACT Investigators: Significance of perihematomal edema in acute intracerebral hemorrhage: The INTERACT trial. Neurology 73(23):1963-1968, 2009
- Bakhshayesh B, Hosseininezhad M, Saadat SMS, Hajmanuchehri M, Kazemnezhad E, Ghayeghran AR: Predicting in-hospital mortality in Iranian patients with spontaneous intracerebral hemorrhage. Iranian J Neurol 13(4): 231-236, 2014
- 4. Balami JS, Buchan AM: Complications of intracerebral haemorrhage. Lancet Neurol 11(1): 101-118, 2012
- 5. Barnes B, Hanley DF, Carhuapoma JR: Minimally invasive surgery for intracerebral haemorrhage. Curr Opin Crit Care 20(2): 148-152, 2014
- Carhuapoma JR, Hanley DF, Banerjee M, Beauchamp NJ: Brain edema after human cerebral hemorrhage: A magnetic resonance imaging volumetric analysis. J Neurosurg Anesthesiol 15(3): 230-233, 2003
- Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA, Connolly ES Jr: The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol 219(2): 398-403, 2009
- Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP: Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 33(11): 2636-2641, 2002
- Gomes JA, Manno E: New developments in the treatment of intracerebral hemorrhage. Neurol Clin 31(3): 721-735, 2013
- 10. Greenland S: Quantitative methods in the review of epidemiologic literature. Epidemiol Rev 9: 1-30, 1987
- Gupta M, Verma R, Parihar A, Garg RK, Singh MK, Malhotra HS: Perihematomal edema as predictor of outcome in spontaneous intracerebral hemorrhage. J Neurosci Rural Pract 5(1): 48-54, 2014
- 12. Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med 21(11): 1539-1558, 2002
- Keep RF, Hua Y, Xi G: Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol 11(8): 720-731, 2012
- Kemal B, Talip A, Nermin T, Yahya C, Ufuk U: Volume of perihematomal edema in diabetic patients. Turk Serebrovaskuler Hastaliklar Dergisi 12(3): 73-76, 2006

- 15. Kim H, Edwards NJ, Choi HA, Chang TR, Jo KW, Lee K: Treatment strategies to attenuate perihematomal edema in patients with intracerebral hemorrhage. World Neurosurg 94:32-41, 2016
- Leasure A, Kimberly WT, Sansing LH, Kahle KT, Kronenberg G, Kunte H, Simard JM, Sheth KN: Treatment of edema associated with intracerebral hemorrhage. Curr Treat Options Neurol 18(2): 9, 2016
- 17. Lee KR, Kawai N, Kim S, Sagher O, Hoff JT: Mechanisms of edema formation after intracerebral hemorrhage: Effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg 86(2): 272-278, 1997
- Levine JM, Snider R, Finkelstein D, Gurol ME, Chanderraj R, Smith EE, Greenberg SM, Rosand J: Early edema in warfarinrelated intracerebral hemorrhage. Neurocrit Care 7(1):58-63, 2007
- Li N, Worthmann H, Heeren M, Schuppner R, Deb M, Tryc AB, Bueltmann E, Lanfermann H, Donnerstag F, Weissenborn K, Raab P: Temporal pattern of cytotoxic edema in the perihematomal region after intracerebral hemorrhage: A serial magnetic resonance imaging study. Stroke 44(4):1144-1146, 2013
- Löppönen P, Qian C, Tetri S, Juvela S, Huhtakangas J, Bode MK, Hillbom M: Predictive value of C-reactive protein for the outcome after primary intracerebral hemorrhage. J Neurosurg 121(6): 1374-1379, 2014
- McCarron MO, Hoffmann KL, DeLong DM, Gray L, Saunders AM, Alberts MJ: Intracerebral hemorrhage outcome: Apolipoprotein E genotype, hematoma, and edema volumes. Neurology 53(9): 2176-2179, 1999
- Murthy S, Moradiya Y, Dawson J, Lees K, Hanley D, Ziai W, VISTA-ICH Collaborators: Perihematomal edema and functional outcomes in intracerebral hemorrhage: Influence of hematoma volume and location. Stroke 46(11): 3088-3092, 2015
- Murthy SB, Urday S, Beslow LA, Dawson J, Lees K, Kimberly WT, Iadecola C, Kamel H, Hanley DF, Sheth KN, Ziai WC, Butcher K, Davis S, Gregson B, Lyden KLP, Mayer S, Muir K, Steiner T: Rate of perihaematomal oedema expansion is associated with poor clinical outcomes in intracerebral haemorrhage. J Neurol Neurosurg Psychiatry 87(11):1169-1173, 2016
- Naval NS, Abdelhak TA, Urrunaga N, Zeballos P, Mirski MA, Carhuapoma JR: An association of prior statin use with decreased perihematomal edema. Neurocrit Care 8(1):13-18, 2008
- Olivot JM, Mlynash M, Kleinman JT, Straka M, Venkatasubramanian C, Bammer R, Moseley ME, Albers GW, Wijman CA: MRI profile of the perihematomal region in acute intracerebral hemorrhage. Stroke 41(11): 2681-2683, 2010
- 26. Orito K, Hirohata M, Nakamura Y, Takeshige N, Aoki T, Hattori G, Sakata K, Abe T, Uchiyama Y, Sakamoto T, Morioka M: Leakage sign for primary intracerebral hemorrhage: A novel predictor of hematoma growth. Stroke 47(4): 958-963, 2016

- Ozdinc S, Unlu E, Karakaya Z, Turamanlar O, Dogan N, Isler Y, Gonul Y, Boyaci MG: Prognostic value of perihematomal edema area at the initial ED presentation in patients with intracranial hematoma. Am J Emerg Med 34(7):1241-1246, 2016
- Qing WG, Dong YQ, Ping TQ, Lai LG, Fang LD, Min HW, Xia L, Heng PY: Brain edema after intracerebral hemorrhage in rats: The role of iron overload and aquaporin 4. J Neurosurg 110(3): 462-468, 2009
- 29. Qureshi AI, Palesch YY, Martin R, Novitzke J, Cruz-Flores S, Ehtisham A, Ezzeddine MA, Goldstein JN, Hussein HM, Suri FK, Tariq N: Effect of systolic blood pressure reduction on hematoma expansion, perihematomal edema, and 3-month outcome among patients with intracerebral hemorrhage: Results from the antihypertensive treatment of acute cerebral hemorrhage study. Arch Neurol 67(5): 570-576, 2010
- 30. Rodriguez-Luna D, Stewart T, Dowlatshahi D, Kosior JC, Aviv RI, Molina CA, Silva Y, Dzialowski I, Lum C, Czlonkowska A, Boulanger JM, Kase CS, Gubitz G, Bhatia R, Padma V, Roy J, Subramaniam S, Hill MD, Demchuk AM, Study PSIC: Perihematomal edema is greater in the presence of a spot sign but does not predict intracerebral hematoma expansion. Stroke 47(2): 350-355, 2016
- Sansing LH, Kaznatcheeva EA, Perkins CJ, Komaroff E, Gutman FB, Newman GC: Edema after intracerebral hemorrhage: Correlations with coagulation parameters and treatment. J Neurosurg 98(5): 985-992, 2003
- Sansing LH, Messe SR, Cucchiara BL, Lyden PD, Kasner SE: Anti-adrenergic medications and edema development after intracerebral hemorrhage. Neurocrit Care 14(3): 395-400, 2011
- Sonni S, Lioutas VA, Selim MH: New avenues for treatment of intracranial hemorrhage. Curr Treat Options Cardiovasc Med 16(1): 277, 2014
- Stang A: Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9): 603-605, 2010
- Staykov D, Wagner I, Volbers B, Hauer EM, Doerfler A, Schwab S, Bardutzky J: Natural course of perihemorrhagic edema after intracerebral hemorrhage. Stroke 42(9): 2625-2629, 2011
- 36. Sykora M, Diedler J, Turcani P, Rupp A, Steiner T: Subacute perihematomal edema in intracerebral hemorrhage is associated with impaired blood pressure regulation. J Neurol Sci 284 (1-2): 108-112, 2009
- 37. Tohidi V, Mughni A, Ahmad H, Hassanzadeh B, El-Gengaihy AE, Kirmani J: Correlation of perihematoma edema in patients with spontaneous intracerebral hemorrhage with clinical outcomes using novel technique of 3D volumetric measurement. Stroke 40(4): e231, 2009
- 38. Towfighi A, Greenberg SM, Rosand J: Treatment and prevention of primary intracerebral hemorrhage. Semin Neurol 25(4): 445-452, 2005
- 39. Tsai YH, Hsu LM, Weng HH, Lee MH, Yang JT, Lin CP: Voxel-based analysis of apparent diffusion coefficient in perihaematomal oedema: Associated factors and outcome predictive value for intracerebral haemorrhage. BMJ Open 1(1): e000230, 2011

- 40. Urday S, Beslow LA, Dai F, Zhang F, Battey TW, Vashkevich A, Ayres AM, Leasure AC, Selim MH, Simard JM, Rosand J, Kimberly WT, Sheth KN: Rate of perihematomal edema expansion predicts outcome after intracerebral hemorrhage. Crit Care Med 44(4): 790-797, 2016
- Urday S, Beslow LA, Goldstein DW, Vashkevich A, Ayres AM, Battey TW, Selim MH, Kimberly WT, Rosand J, Sheth KN: Measurement of perihematomal edema in intracerebral hemorrhage. Stroke 46(4): 1116-1119, 2015
- 42. Urday S, Kimberly WT, Beslow LA, Vortmeyer AO, Selim MH, Rosand J, Simard JM, Sheth KN: Targeting secondary injury in intracerebral haemorrhage-perihaematomal oedema. Nat Rev Neurol 11(2): 111-122, 2015
- 43. van Asch CJ, Luitse MJ, Rinkel GJ, van der Tweel I, Algra A, Klijn CJ: Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol 9(2):167-176, 2010
- 44. Venkatasubramanian C, Aksoy D, Narayana R, Mlynash M, Eyngorn I, Snider R, Wijman C: A comparison of the evolution of perihematomal edema volume between large and small intraparenchymal hematomas. Neurocrit Care 13: S106, 2010
- 45. Venkatasubramanian C, Mlynash M, Finley-Caulfield A, Eyngorn I, Kalimuthu R, Snider RW, Wijman CA: Natural history of perihematomal edema after intracerebral hemorrhage measured by serial magnetic resonance imaging. Stroke 42(1): 73-80, 2011

- 46. Volbers B, Willfarth W, Kuramatsu JB, Struffert T, Dorfler A, Huttner HB, Schwab S, Staykov D: Impact of perihemorrhagic edema on short-term outcome after intracerebral hemorrhage. Neurocrit Care 24(3): 404-412, 2016
- 47. Yang J, Arima H, Wu G, Heeley E, Delcourt C, Zhou J, Chen G, Wang X, Zhang S, Yu S, Chalmers J, Anderson CS: Prognostic significance of perihematomal edema in acute intracerebral hemorrhage: Pooled analysis from the intensive blood pressure reduction in acute cerebral hemorrhage trial studies. Stroke 46(4): 1009-1013, 2015
- 48. Yu Y, Zhao W, Zhu CP, Kong ZP, Xu Y, Liu GZ, Gao XG: The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. Plos One 10(4):e0122371, 2015
- 49. Zheng D, Arima H, Heeley E, Karpin A, Yang J, Chalmers J, Anderson CS: Ambient temperature and volume of perihematomal edema in acute intracerebral haemorrhage: the INTERACT1 study. Int J Stroke 10(1): 25-27, 2015
- Zheng H, Chen C, Zhang J, Hu Z: Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis 42 (3-4): 155-169, 2016
- 51. Zhou W, Marinescu M, Veltkamp R: Only very early oxygen therapy attenuates posthemorrhagic edema formation and blood-brain barrier disruption in murine intracerebral hemorrhage. Neurocrit Care 22(1): 121-132, 2015
- 52. Zubkov AY, Mandrekar JN, Claassen DO, Manno EM, Wijdicks EF, Rabinstein AA: Predictors of outcome in warfarin-related intracerebral hemorrhage. Arch Neurol 65(10):1320-1325, 2008