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ABSTRACT 

AIm: Autophagy is an important process that balances cellular protein synthesis and degradation and is involved in many physiological and 
pathological conditions. However, the precise role of autophagy has not yet been defined in the model of spinal cord injury (SCI).  

MaterIal and Methods: Here, we utilized a hemisection model of acute SCI to elucidate the role of autophagy in the pathological processes 
underlying SCI.      

Results: LC3B-II, a well-known marker of autophagy, was immunohistochemically detected 4H after SCI, peaked at 3D, and decreased at 
21D. Hematoxylin-eosin (HE) staining confirmed accurate spinal cord hemisection, which was accompanied by both neuronal swelling and 
shrunken neurons with darkly stained, condensed nuclei. These findings suggest that the process of autophagy is related with pathological 
changes following SCI.    

ConclusIon: Our results indicate autophagy is involved in the pathological changes after SCI, and potential therapies to promote neuronal 
regeneration following SCI should target the mechanism of autophagy.      
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ÖZ 

AMAÇ: Otofaji, hücre protein sentezini ve degradasyonunu dengeleyen önemli bir süreçtir ve birçok fizyolojik ve patolojik durumla ilişkilidir. 
Ancak otofajinin omurilik yaralanması modelinde tam rolü tanımlanmamıştır. 

YÖNTEM ve GEREÇLER: Burada otofajinin omurilik yaralanmasının temelindeki patolojik süreçlerdeki rolünü açıklığa kavuşturmak üzere akut 
omurilik yaralanması için bir hemiseksiyon modeli kullandık. 

BULGULAR: Otofajinin iyi bilinen bir işareti olan LC3B-II, omurilik yaralanmasından 4 saat sonra immünohistokimyasal olarak saptandı, 3 
günde tepe düzeye çıktı ve 21 günde azaldı. Hematoksilen eozin (HE) boyama hassas omurilik hemiseksiyonunu doğruladı ve beraberinde 
hem nöronal şişme hem de koyu boyanan, kondanse çekirdekli küçülmüş nöronlar vardı. Bu bulgular otofaji sürecinin omurilik yaralanmasında 
patolojik değişikliklerle ilişkili olduğunu düşündürmektedir. 

SONUÇ: Sonuçlarımız otofajinin omurilik yaralanması sonrasında patolojik değişikliklerle ilgili olduğuna işaret etmektedir ve omurilik 
yaralanması sonrasında nöron rejenerasyonunu desteklemek amaçlı potansiyel tedaviler otofaji mekanizmasını hedeflemelidir. 
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Acute Spinal Cord Injury in Rats Induces Autophagy 
Activation 
Sıçanlarda Akut Omurilik Hasarı Otofaji Aktivasyonunu İndükler 

Introduction

Autophagy is a cellular “self-eating” of damaged organelles 
and long-lived proteins (15,17) and is known to participate 
in various diseases, such as cancer (17), infection (12), heart 
disease (1), and vascular disease (9). Autophagy is a static 
metabolism process during periods of nutrient availability, 
when it eliminates dysfunctional or damaged organelles and 
long-lived proteins. During times of nutrient deprivation, 
autophagy increases and recycles aging proteins back to their 
amino acid and fatty acid constituents to sustain the cell (25). 
In addition, autophagy can suppress tumor development, 
eliminate bacterial infection, and is involved in ischemia-
reperfusion injury. Recently, many studies have investigated 
autophagy activation during neuronal regeneration. For 

example, autophagy is deregulated with aging, and enhanced 
autophagy may slow down the symptoms of Alzheimer’s 
disease (7,20,27). Conversely, in a model of Parkinson’s disease 
(4,5,11,30), the expression of autophagy-related proteins was 
upregulated, suggesting that the process was enhanced.

Here, we determined whether autophagy was activated in a 
model of acute spinal cord injury (SCI). Light chain 3 (LC3) was 
used to assess the time course of autophagy following spinal 
cord hemisection at different time points. Hematoxylin-eosin 
(HE) staining was performed to investigate the relationship 
between autophagy and pathological changes. These results 
are to elaborate the role of autophagy in the process of 
pathological changes after SCI.
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Material and methods

Animals’ Preparation and Operation

All procedures were in compliance with the guidelines for 
animal scientific procedures approved by the host institution’s 
ethical committee. A total number of 48 Sprague Dawley rats 
weighing 200-250g were randomly divided into two groups: 
control (laminectomy only) and SCI group, which included 
five sub-groups, 4H (hour), 3D (day), 7D, 14D and 21D after 
injury. Before surgery, all animals were housed three or four 
per cage for 1 week to adapt to the new environment (25°C 
on a 12-h light/dark cycle).

Mice were anesthetized with 10% pentobarbital sodium (300 
mg/kg, intraperitoneal [i.p.]) (28). The skin was sterilized, and 
an incision was made to expose the dorsal muscles, which 
were then divided in layers. A laminectomy was performed 
at the T9-T10 level with the help of a dissecting microscope 
to expose the spinal cord. A dorsal hemisection (right side) 
was performed at T9-T10 (16), and residual fibers were 
removed from the lesion site. After that, the muscles and skin 
were sutured in layers. During surgery, body temperature 
was recorded and maintained at 37°C with a heating pad. 
Following surgery, the bladder was manually expressed three 
times a day until self-voiding bowel function recovery. The 
control group was also operated on, but the spinal cord was 
not hemisected.

Tissue Preparation 

After surgery, animals at each time point were transcardially 
perfused with physiological saline solution followed by 4% 
paraformaldehyde in 0.1 M phosphate buffer (PB). About 1.5 
centimeters of spinal cord around the lesion site was collected 
and immersed in the same fixative for further sectioning. The 
spinal cord samples were then postfixed in 30% sucrose in 
phosphate-buffered saline (PBS) overnight until the tissue 
sank. Next, the samples were frozen, and serial 20-μm 
transverse and longitudinal sections were taken around the 
SCI epicenter and mounted on slides. 

Immunohistochemistry

For further immunohistochemical staining, the samples 
were washed in PBS three times for 5 min each and boiled 
in 0.1% Trisodium citrate for 15 min for antigen retrieval. 
Next, the samples were incubated with blocking reagent for 
1 h at room temperature and further incubated with anti-LC3 
polyclonal rabbit antibody (1:200, Sigma, St. Louis, MO, USA) 
at 4°C overnight. Next, sections were washed with 0.01% 
Tween20 in PBS and then immersed with TRITC goat-rabbit 
IgG secondary antibody for 1 h. Then, the sections were 
counterstained with DAPI to identify cell nuclei. After the 
slides were sealed, the sections were imaged with a confocal 
microscope. LC3-positive cells were counted in 100 sections 
per animal and then the percentage of LC3-positive cells was 
averaged in all 8 animals.

HE Staining

The procedures were performed following the manufacturers’ 
guidelines. In brief, the sections were washed with PBS three 
times for 5 min each, followed by hematoxylin for 5 minutes 
and eosin for another 5 min at room temperature. After three 
more 5-min washes in PBS, sections were quickly differentiated 
in 95% alcohol, made transparent in dimethylbenzene, and 
sealed with neutral resin. Finally, the percentage of damaged 
cells were counted in 100 sections per animal and averaged 
for further analysis in all 8 animals.

Statistical Analysis 

All images were analyzed using Image pro plus software. Data 
were reported as Mean±Standard Deviation (SD). Significant 
differences among time points were assessed by analysis of 
variance (ANOVA) with SPSS software17.0, and p<0.05 was 
considered statistically significant (*and ** indicate p<0.05 and 
p<0.01, respectively).

Results

LC3 Upregulation After Acute SCI

Over time, the percentage of cells with punctate LC3B-II 
gradually increased near the wound site (Figure 1A,B). In the 
control group, LC3B-II remained at basal level; there were only 
a few cells with punctate LC3B-II immunoreactivity. However, 
in the acute SCI group, the percentage of LC3B-II positive cells 
was higher than the control group for all time points. At 4H 
after injury, the percentage of positive cells was increased; it 
peaked at 3D, and began to decrease at 7D and 21D after SCI. 
Collectively, the results indicate that the potential primary 
and secondary pathological mechanisms of SCI activated the 
process of autophagy.

Histological Changes in SCI

HE staining was used to investigate histological changes 
after acute SCI. Neurons of gray matter in the control group 
appeared normal, with intact, round, full nuclei and clear 
nucleoli. However, SCI induced histological changes near the 
injury site, including neuronal swelling and shrunken neurons 
with darkly stained, condensed nuclei. Meanwhile the tissues 
seemed disorderly and irregularly arranged (Figure 2A,B). In 
white matter, the glia cells were also damaged after SCI. At 
4H after injury, there was evidence of slight neuronal and 
glia cells losses in the injury site. HE staining showed massive 
astrocytes infiltration. After 3D, there were significant losses 
and damage of neurons and glia cells, which were replaced 
by numerous macrophages. In addition, after 7D and 21 D, 
with partial blood flow recovery, neurons and glia cells had 
gradual recovery.

Discussion

Autophagy is characterized by the processes of initiation, 
elongation, closure (double membranes), maturation (fusion 
of autophagosome and lysosome), and degradation. Among 
them, double membrane formation is essential for autophagy 
activation. The aggregation of Atg8 protein, also known as 
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Figure 1: LC3B-II expression near the injury site at each time 
point. A) Cells with punctate LC3B-II expression in the control and 
SCI groups at 4H, 3D, 7D and 21D after injury (scale bar=20um, 
arrows show the positive cells). B) Quantitative analysis of 
percentage of LC3B-II positive cells. Values represent the 
Means±SD. *p<0.01,**p<0.05.

Figure 2: Histopathological changes in the control and SCI 
groups at 4H, 3D, 7D, and 21D after injury. A) At 4H and 3D 
after surgery, the neurons and glia cells gradually disappeared. 
At 7D and 21D as blood flow recovered, the neurons and glia 
cells appeared more normal (scale bar=50um, arrows show 
the damaged cells). B) Quantitative analysis of percentage of 
damaged cell. *p<0.01,**p<0.05.
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In conclusion, autophagy activation was observed over time 
in our model of acute spinal cord injury. Cells with punctate 
LC3B-II appeared at 4H, peaked at 3D, and decreased at 7D 
and 21D after injury.
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LC3-II, lipidated) (18). Previous studies assessed LC3 upregula-
tion to study autophagy induction in various disease models 
(2,10).

We employed an acute model of SCI to determine whether 
autophagy was induced. In our model system, LC3B-
II expression gradually increased with time. Autophagy 
induction occurred 4H after injury, peaked at 3D, and declined 
at 7D and 21D after injury. At the same time, HE staining 
revealed that the process of autophagy was correlated with 
the pathological changes. All of these results demonstrate 
that autophagy activation played an important role in the 
pathological changes after SCI and may also be involved in 
the process of neuronal regeneration.

Autophagy has become an important research topic because 
of the discovery of those components involved in recycling 
cellular damaged organelles and long-lived proteins (24). This 
process has an important role in many pathological conditions. 
In tumor development, autophagy has two different roles; 
it can promote tumor cells survival and facilitate tumor 
suppression (13,26,29). In Alzheimer’s disease, the expression 
of proteins involved in the autophagic pathway is decreased, 
and there is evidence that over-activation of autophagy may 
slow down the symptoms of memory loss and behavioral 
dysfunction (23,27). In other models of neuronal injury, 
autophagy was induced and participated in the processes 
of neuronal regeneration and behavioral recovery (25). In 
neonatal hypoxia-ischemia-induced brain injury, enhanced 
beclin1 expression and switching the mechanisms of cell 
death from apoptosis to necrosis may explain why autophagic 
processes facilitate neuronal recovery. 
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effect on neuronal recovery.
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