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AIM: To learn how rat primary somatosensory cortex (pSSC) responses to the loss of inputs from hind-paw, using fMRI of an inferior 
magnetic power (1.5 Tesla) with special designed high-powered rat coil. 
MATERIAL and METHODS: Ten adult male Sprague-Dawley rats were enrolled in this study. The rats were anesthetized with 
ketamine injection. Xylazine was intraperitoneally injected for analgesia and muscle relaxation with careful maintenance of 
spontaneous respiration. Either right or left hind-paws were amputated under aseptic conditions according to predefined random 
allocation of the rats.  A 12-channel rat surface coil developed for proper image resolution in 1.5 Tesla MR was used. Functional 
magnetic resonance imaging was obtained before hind-paw amputation; 2, 15 and 30 days after the amputation. 
RESULTS: Activation signals were detected in 5 rats’ contralateral pSSC before the hind-paw amputation with regression and 
cessation of the signal after the amputation. Signal re-appeared in the contralateral pSSC of only one rat (rat 9) 30 days after the 
amputation.
CONCLUSION: This study showed that functional plasticity might occur in the pSSC following hind-paw amputation of rats. 
Further studies are necessary to understand the true nature of the plasticity observed in pSSC, with new and novel measurement 
techniques on cellular basis rather than gross anatomical one.
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█   INTRODUCTION

Limb amputations, which could be caused by illness and 
traumatic events, increase mortality and medical costs, 
and decrease the quality of life (23). Trauma is one of the 

most common reasons for morbidity and mortality in children 
older than 1 year of age. Traumatic limb amputation is more 
common in children compared to adults (13). Lawn mower and 
motor vehicle injuries are leading causes of limb amputation 
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1.5 Tesla MRI (Magnetom Espree, Siemens, Germany). 
Anatomical references were shown using 3D T1-weighted 
(3D-T1W) images. Repetition time (TR) was 1300 msec, 
echo time (TE) was 3.2 msec, FOV read was 120 mm, slice 
thickness was 1 mm, and image matrix was 115x192 for 
these 3D-T1W images. The technical features for functional 
imaging (gradient-echo BOLD imaging) were as follows; TR/
TE: 3000/30, number of slices: 35, slice thickness 3.0 mm, 
FOV: 145x145 mm, matrix size: 64x64, and flip angle: 90o. 
Different runs of the experiment were averaged to improve 
signal-to-noise ratio. 

Functional magnetic resonance imaging was obtained before 
hind-paw amputation, 2,15 and 30 days after the amputation. 
The rats were positioned supine on fMRI. Each fMRI session 
took 2 minutes 48 seconds at 10 phases of passive and active 
points. Active points were done as standard hind-limb motion 
of flexion-extension in the same manner each time applied by 
the same author (AA).

█     RESULTS
Intense activation signal was observed at the junction of the 
left cingulate gyrus and the left medial thalamus before the-
hind-paw amputation in rat 1. A decreased activation signal 
was seen in the cingulate gyrus 2 days after the amputation. 
No activation signal was detected on the 15th and 30th days of 
the amputation. 

No activation signal was present in the left pSSC of rat 2 at 
any time point. An intense activation signal was observed in 
the right cingulate gyrus at pre-amputation era. It turned into 
a slight activation signal at the lateral border of the right pSSC 
2 days after the amputation, at the inferior border of the left 
medial thalamus 15 days after the amputation and in the right 
pSSC at the final follow-up.

No activation signal was present in the left pSSC of rat 3. 
An intense activation signal was detected in the right medial 
thalamus before hind-paw amputation. Activation signal in the 
left medial thalamus was intense 2 days after the amputation 
and slight 15 days after the amputation. It faded away 30 days 
after the amputation.

An intense activation signal was observed at the junction of 
the left cingulate gyrus and the medial border of the left pSSC 
before hind-paw amputation in rat 4. Intensity of this activation 
signal decreased 2 days after the amputation (Figure 1, rat 4; 
a, b). Activation signals totally disappeared on the 15th day of 
the amputation, and never reappeared thereafter (Figure 1, rat 
4; c, d).

An intense activation signal was present in the right cingulate 
gyrus and at the border of the right cingulate gyrus and the 
right pSSC before hind-paw amputation in rat 5 (Figure 1, 
rat 5; a). Activation signals totally regressed following the 
amputation (Figure 1, rat 5; b-d).

An intense activation signal was observed in the right medial 
thalamus before hind-paw amputation in rat 6. The activation 
signals faded away and never turned back following the 
amputation. However, no signal was detected in the pSSC at 
any time point. 

in children, whereas trauma and diabetes with concomitant 
vascular pathologies are leading causes of limb amputation 
in adults (8,13,22). Functionality following amputation proce-
dures is very important for social re-integration of the patients. 

Morphological and functional changes in the primary somato-
sensory cortex (pSSC) following limb amputation are still un-
clear. In the last 50 years, many animal and human studies 
began with histological analysis and ended up with functional 
magnetic resonance imaging (fMRI). Limb amputated rats 
have been good to study the morphological and/or functional 
changes in the pSSC (5,16,17,26-28,33,34,36).

Topographical organization of the hind-paw in pSSC is 
present in S-I cortex of normal rats. The mean area of rat 
pSSC associated with hind-paw innervation is 0.94 mm2 (34).
Sciatic and saphenous nerves innervate the hind-paw skin in 
rats. Sciatic nerve dominates (85%) over saphenous nerve 
(15%) in means of representative area of the hind-paw skin 
in pSSC. Hind-paw skin area innervated by sciatic nerve is 
represented in a more rostral and medial location in the pSSC 
compared to that innervated by the saphenous nerve. Medial 
and lateral sides of hind-paw are represented contrarily in the 
pSSC. Similarly, distal plantar and hairy skin surfaces convey 
signals to more anterior; proximal skin surfaces convey signals 
to caudal sides of representative area in the pSSC (34).

Previous studies regarding pSSC plasticity were mostly on 
histological or neurophysiological basis (5,34). However, 
neurophysiological studies are limited in means of spatial 
resolution due to the dimension of electrodes, precision of 
electrode positioning, and distribution of local field potential 
(36). Blood-oxygen-level dependent (BOLD) fMRI studies have 
gained attention to study the pSSC plasticity in both animal 
and human models, in the past 20 years (3,4,7,9,10,19,24,26-
28,30,31,33,36,39-41).

In this study, we aimed to learn how rat pSSC responses to 
the loss of inputs from hind-paw, using fMRI of an inferior 
magnetic power (1.5 Tesla) with special designed high-
powered rat coil. 

█    MATERIAL and METHODS
We conducted a prospective laboratory study. Local Ethics 
Committee for Animal Research of Marmara University 
approved the study protocol (33.2013.mar). Ten adult male 
Sprague-Dawley rats were enrolled in this study. The rats 
were anesthetized with ketamine injection. Xylazine was 
intraperitoneally injected for analgesia and muscle relaxation 
with careful maintenance of spontaneous respiration. Onset 
of anesthesia effect was checked with absence of the cornea 
reflex and spontaneous limb retraction. Either right (rats 1-4, 
7) or left hind-paws (rats 5-6, 8-10) were amputated under 
aseptic conditions according to predefined random allocation 
of the rats. The rats were daily observed for any sign of 
infection at the site of the cut surface. 

A 12-channel rat surface coil developed by Bilkent University, 
National Magnetic Resonance Research Center (UMRAM, 
Ankara, Turkey) was used for proper image resolution in 
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An intense activation signal was seen in the left pSSC of rat 
7, yet the signal decreased in intensity on the 2nd day and 
disappeared on the 15th day of the amputation (Figure 1, rat 
7; a-d).

A slight activation signal was present in the left cingulate 
gyrus before hind-paw amputation in rat 8. Intense activation 
signals were detected in the right pSSC area 2 days after the 
amputation, and in the right cingulate gyrus 15 days after the 
amputation. No activation signal was seen at the final follow-
up. 

An intense activation signal was observed at the medial 
border of the right pSSC of rat 9, which disappeared after the 
amputation. A new slight activation signal re-appeared at the 
lateral border of the right pSSC on the 30th day of amputation 
(Figure 1, rat 9; a-d). 

An intense activation signal was detected in the right pSSC 
before the amputation in rat 10. The signal intensity decreased 
following the amputation. However, it was still visible in the 
same location until the final follow-up, and then it disappeared.
The study results have been summarized in Table I. 

█    DISCUSSION
Trauma and diabetes with concomitant vascular pathologies 
are leading causes of limb amputations (8,13,22). Functionality 
following amputation procedures is very important for social re-
integration of the patients. It was shown that the loss of upper 
limb in non-human primates changed functions in somato 
sensory and motor areas of the brain. This phenomenon 
corresponds to phantom limb sensation/pain seen in human 
amputees (32). Thus, understanding brain plasticity will help 
us manage the process with improved functionality. 

Figure 1: Somatosensory cortex (SSC) activation patterns detected in rats 4, 5, 7, and 9. Rats 4 and 7 underwent right hind-paw 
amputation. Rats 5 and 9 underwent left hind-paw amputation.
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postnatal day (5). In the present study, we observed functional 
changes in the adult life of rats. We also found that the rats 
were affected in different patterns, even though the injuries 
and follow-up images were done on a regular pre-designed 
pattern. This was previously depicted by Dawson and 
Killackey (5). As a limitation of our study, we did not evaluate 
the brains histologically to identify whether functional changes 
correlated with the morphological ones.

Representation of the hind-paw area in the pSSC is mostly 
fed up by the sciatic nerve (85%) and less by the saphenous 
nerve (15%). In case of sciatic nerve injury, representation of 
sciatic nerve supplied area in the pSSC is replaced partly by 
saphenous nerve (the area represented by saphenous nerve 
increases 3-fold) (34). This expansion takes place in 1-2 
days following sciatic nerve injury, yet it could not enlarge 
to the whole representation of the hind-paw area in pSSC. 
No further neurophysiological recovery could be seen in the 
representation of hind-paw area innervated by the sciatic 
nerve 5 months after de-afferentation of the nerve itself (34). 
Similar expansions in the pSSC have been reported in an fMRI 
study of fore-paw digit amputation in rats (36). In the present 
study, a slight functional recovery was observed in rat 9 at 
the final follow-up. The recovery we observed in rat 9 could 
be explained by regain of the cortical area by skin proximal 
to the amputation, which is termed as peripheral adjacency. 
Peripheral adjacency, the intact skin innervation surrounding 
the sacrificed skin area, has been reported to be the main 
source of re-afferentation in the pSSC (17,20,21,34). The re-
afferentation by this peripheral adjacency occurs with a limited 
efficiency (34), as we observed in the present study. Another 
factor that could explain recovery in the pSSC area could be 
the interference with motor signals that overlap with sensory 
signals in the S-I representation of the rat hind-paw (6,11,29).
The other possible explanation for the re-afferentation could 
be plasticity of the pre-existing yet inactive neuronal circuits 
that have been re-activated by the peripheral feedback 
(1,2,12).

Functional MRI has developed a view of functionality in the 
human brain. Stimulation of the pSSC increases neuronal 
activity, induces extracellular ATP release and increases 
intracellular calcium concentration in astrocytes. Hence, 
these changes facilitate the release of vasoactive metabolites 
from astrocytes contributing to neurovascular coupling, which 
makes up BOLD fMRI. Neurovascular coupling is still unclear 
and requires further studies in this field (15,25,35,36). There 
are some drawbacks of BOLD fMRI such as the large vein 
effect, the signal-to-noise ratio, and the vascular point spread 
function that could intervene with understanding of neural 
function in cortical columns or layers (14,18). However, BOLD 
fMRI has been used many times in high field power MRI studies 
(3T-11.7T) (3,4,7,9,10,19,24,26-28,30,31,33,36,39-41). In this 
study, we aimed to learn how rat pSSC responses to the loss 
of inputs from hind-paw, using fMRI of an inferior magnetic 
power (1.5 Tesla) with special designed high-powered rat coil. 

The first topographical analysis between a peripheral organ 
and the somato sensory cortex was done in a mouse model, 
between large mystacial vibrissae and group of cells termed 
as ‘barrels’ in the fourth layer of the mouse pSSC (38). 
Mammalian pSSC has representation areas of the body parts 
according to the distribution and density of the receptors 
in that body parts such that head composing 67%, fore-
limb composing 15%, trunk composing 14% and hind-limb 
composing 4% of the rat pSSC (37). The representation of 
hind-paw in the pSSC lays posterior to the representation of 
fore-paw, and is formed by anterior and posterior portions. 
The anterior portion is composed of three- or four-elongated 
clusters aligned in an anteromedial-posterolateral orientation, 
which correspond to hind-paw digits. The posterior portion 
is composed of smaller and round clusters representing the 
palm pads. Overall proportions of these areas are similar in 
rats (5).

Peripheral organ or nerve injuries may result in changes in 
the rat pSSC anatomy, if these injuries occur before the 5th 

Table I: Side of Hind-Paw Amputation and Response of the Somatosensory Cortex at Pre-Amputation and Post-Amputation Follow-ups

Rat # Side of amputation Pre-amputation Post-amputation 
day 2

Post-amputation 
day 15

Post-amputation 
day 30

1 R N N N N

2 R N N N N

3 R N N N N

4 R I S N N

5 L I N N N

6 L N N N N

7 R I S N N

8 L N I N N

9 L I N N S

10 L I S S N
#: Number, R: right, L: left, I: intense activation signal, S: slight activation signal, N: no activation signal.
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As a limitation of our study, we gave stimulations as 
standardized movements of the limb by the same author (AA) 
instead of electrical stimulation. However, not all frequencies of 
electrical stimulation are successful in raising fMRI responses 
in the corresponding pSSC area in rats (36). Besides, phantom 
expansion in pSSC area of corresponding body part has been 
observed due to electrical stimulation itself (16). We were 
successful to observe activation signals in 5 out of 10 rats’ 
pSSC in the pre-amputation era. This difference in results 
could be due to different hemodynamic responsiveness of 
the rats. Besides, BOLD fMRI results are affected by signals 
disseminated from vessels neighboring the cortical field of 
interest. Thus, this explains different zones of signal activation 
other than pSSC observed in the remaining five rats at pre-
amputation period. One other limitation was lower magnetic 
power of the MRI (1.5 Tesla), which could have missed some 
signals from other five rats. So, further studies with higher 
settings should be conducted to make more clear statements 
about this topic.

█    CONCLUSION
This study showed us that pSSC functional plasticity might 
occur following hind-paw amputation in a rat model. Further 
studies are necessary to understand true nature of plasticity 
observed in pSSC following limb amputation, with new and 
novel measurement techniques on cellular basis rather than 
gross anatomical one.
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