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ABSTRACT

AIM: To investigate the therapeutic and neuroprotective effects of transcranial direct current stimulation (tDCS) application on the 
traumatic brain injury (TBI)-induced glutamate and calcium excitotoxicity and loss of motor and cognitive functions.   
MATERIAL and METHODS: Forty rats were equally divided in the sham, TBI, tDCS + TBI + tDCS, and TBI + tDCS groups. Mild 
TBI was induced by dropping a 450-g iron weight from a height of 1 m onto the skull of the rats. The tDCS + TBI + tDCS group was 
prophylactically administered 1 mA stimulation for 30 min for 7 days starting 5 days before inducing TBI. In the TBI + tDCS group, 
tDCS (1 mA for 30 min) was administered 2 h after TBI, on days 1 and 2. Cognitive and locomotor functions were assessed using 
the novel object recognition and open field tests. The calcium, glutamate, and N-methyl-D-aspartate receptor 1 (NMDAR1) levels in 
the hippocampus were measured using enzyme-linked immunosorbent assay.
RESULTS: Although the motor and cognitive functions were substantially reduced in the TBI group when compared with the sham, 
they improved in the treatment groups (p<0.05). The calcium, glutamate, and NMDAR1 levels were considerably higher in the TBI 
group than in the sham (p < 0.001). However, they were considerably lower in the tDCS + TBI + tDCS and TBI + tDCS groups than 
in the TBI groups (p < 0.05). In particular, the change in the tDCS + TBI + tDCS group was higher than that in the TBI + tDCS group.  
CONCLUSION: Application of tDCS before the development of TBI improved motor and cognitive dysfunction. It demonstrated a 
neuroprotective and therapeutic effect by reducing the excitotoxicity via the regulation of calcium and glutamate levels.
KEYWORDS: Calcium, Glutamate, N-methyl-d-aspartate receptor, Transcranial direct current stimulation, Traumatic brain injury, 
Rat
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█   INTRODUCTION

Traumatic brain injury (TBI) is defined as damage to the 
brain caused by direct and indirect forces. A blow to 
the brain from outside the body can cause temporary or 

permanent neurological dysfunction. Furthermore, repetitive 
head trauma can result in chronic traumatic encephalopathy 
(15). In particular,  in people who have been boxing profession-
ally for several years, changes in mood, memory, and behavior 
have been observed. Recently, it has been acknowledged that 
repeated TBIs in professional players in various sports can 
lead to increasingly serious consequences (17). Most cases 
of TBI are encountered in martial sports, and circumstances 
similar to martial sports can be encountered in professional 
hockey, football, and war (15). Because of this circumstance, 
permanent damage can occur and affect people’s lives. There 
is a need to develop treatment protocols with neuroprotective 
effects that can also be applied prophylactically in people at 
high risk of developing TBI. This could minimize the damage 
that individuals who are at high risk for recurrent head trauma 
would experience in their sports or professional life. TBI is a 
major cause of disability worldwide. Because the brain is the 
most vulnerable and complex organ of the body, TBIs affect 
the life of the person in several ways. This leads to physical, 
cognitive, and behavioral losses. Head trauma is a lethal, dis-
abling pathology that requires long-term treatment and care, 
and it statistically ranks fourth among the causes of death 
(3,6). Although it is a common and serious health concern, 
making a diagnosis and predicting the prognosis remain chal-
lenging (3). Clinically, TBI may result in changes in cognitive 
characteristics, such as memory loss, perception difficulties, 
distraction, and logical thinking, as well as physical issues, 
such as partial or complete paralysis, balance disorders, swal-
lowing difficulty, and speech disorders. Unless TBI is treated 
early, the mortality rate is quite high (3,6).

TBI increases the extracellular glutamate concentration (26). 
Disruption of calcium-mediated exocytosis and presynaptic 
membrane-bound ion pumps causes glutamate release from 
neurons because of depolarization (3,5). This reportedly caus-
es a toxic increase in the intracellular calcium concentration. 
The association of intracellular N-methyl-D-aspartate recep-
tors (NMDARs) with reactive oxygen and nitrogen particles 
causes a lethal influx of ions, particularly calcium ions, after 
glutamatergic stimulation (18). During excitotoxicity, mito-
chondria maintain intracellular calcium balance by retaining 
excess free calcium (3).

The effects of several pharmacological agents, such as anti-in-
flammatory drugs, excitotoxicity-blocking drugs, antiapoptot-
ic agents, calcium channel blockers, free radical scavengers, 
steroids, and statins, have been tested in different animal 
models to limit biochemical damage and cell death after a TBI. 
In animal experiments, statins have reduced glial activation 
and inflammatory response, which cause cerebral ischemia 
and secondary neuronal damage in closed-head traumas (17). 
Increasing knowledge about the physiopathology of head 
traumas, application of appropriate treatment methods by 
identifying the physiology of TBI-induced secondary neuro-
nal damage, and advanced developments in intensive patient 

care techniques have reduced mortality rates and significantly 
improved the prognosis. Analysis of the TBI pathophysiology 
demonstrates that excitotoxicity of the NMDARs and free rad-
ical-induced cell death processes play a major role in causing 
neuronal damage (18).

Although there are studies on drug treatment of TBI-induced 
learning and memory impairment, studies using transcranial 
direct current stimulation (tDCS) neuromodulation, a noninva-
sive method, are limited; tDCS is a relatively novel technique 
(1,4). tDCS induces changes in the resting membrane poten-
tial via the modulation of sodium and calcium channels. tDCS 
effectively acts on voltage-gated calcium channels, α-ami-
no-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors 
(AMPAR), and NMDARs (21). Although there are studies on 
the treatment of TBI-induced learning and memory impair-
ment using different methods, there are no studies that have 
demonstrated the effect of tDCS stimulation on glutamate-as-
sociated cognitive and molecular mechanisms. Thus, herein, 
we have aimed to evaluate the effects of tDCS on TNI-induced 
motor and cognitive functional changes as well as on the lev-
els of NMDAR1, calcium, and glutamate. Furthermore, we 
evaluated the prophylactic activity of tDCS in people at risk 
of TBI before the development of TBI. Thus, both the neuro-
protective and therapeutic efficacy of tDCS treatment were 
investigated.

█   MATERIAL and METHODS
Compliance with Ethical Standards 

The authors declare no competing financial interests. All 
animal use and experimental protocols were approved and 
implemented by Erciyes University (24/015).

Animals and Experimental Design

A total of 40 three-month-old, male, Wistar albino rats 
weighing 250–300 g were divided into the sham, TBI, tDCS 
+ TBI + tDCS, and TBI + tDCS groups (Figure 1). A mild TBI 
(mTBI) model was created using the Marmarou method (19). 
Locomotor activities and cognitive function were assessed 
using the open field (OF) and novel object recognition (NOR) 
tests, respectively. After the experiments, the rats were 
euthanized, the hippocampus was removed and calcium, 
glutamate, and NMDAR1 levels were measured using enzyme-
linked immunosorbent assay (ELISA).

Marmarou Weight-Drop Model

In our study, Marmarou’s weight-drop method, which is the 
most preferred weight-drop model, was used (19). The rats 
were anesthetized with 5% isoflurane. Thereafter, a moderate 
chronic traumatic encephalopathy model was created by 
dropping a weight of 450 g from a height of 1 m directly onto 
a steel disk (14,20).

Transcranial Direct Current Stimulation Application

The animal DCS Stimulator was used in the experiments. 
Anodal tDCS stimulation (1 mA for 30 min) was applied with 
a disk electrode that was placed on the heads of rats under 
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isoflurane anesthesia. tDCS was applied in the sham, tDCS + 
TBI + tDCS, and TBI + tDCS groups.

Behavioral Tests

Open-Field test

Locomotor activity was assessed in a setup with a base of 
80 x 80 cm. The rats were placed in the center of the area, 
monitored, and recorded using a video camera for 5 min. The 
total distance covered (cm), velocity (cm/s), and number of 
squares entered were noted to evaluate the locomotor activity 
(2).

Novel object recognition test

Short-term memory was assessed using the NOR test. The 
time spent with novel objects was recorded for each rat 
(2). The discrimination index and time spent with the novel 
object(s) were analyzed in the NOR test. Discrimination index 
= [(Time spent with the novel object − time spent with the old 
object)/total time) x 100.

Tissue Collection

The rats were decapitated on day 2 after the behavioral 
experiments. For the biochemical analyses, the motor cortex 
tissue was dissected from the brain and stored at –80°C. The 
hippocampus was homogenized in phosphate-buffered saline 
(PBS, pH 7.4) and centrifuged at 12,000 rpm for 20 min at 4°C. 
The supernatants were used in the ELISA analyses.

Biochemical Analysis

Enzyme-linked immunosorbent assay

The levels of calcium, glutamate, and NMDAR1 were quantified 
using ELISA kits. The concentrations were calculated from 
the calcium, glutamate, and NMDAR1 absorbance values 
in the supernatants for the standard curve. The values were 
normalized to that of total protein and expressed as pg/mg of 
tissue protein.

Protein measurements

The protein concentration in the hippocampus tissues were 
measured using a modified Bradford assay (Pierce Chemical 
Company, Rockford, IL, USA) at 595 nm.

Statistical Analysis

SPSS was used for the statistical analyses of data obtained 
from the behavioral and biochemical experiments. The results 
are presented as mean ± standard error of the mean (SEM). 
A p-value of < 0.05 was considered statistically significant. 
The one-way ANOVA and Tukey’s test for post hoc analysis 
were used to analyze data with a normal distribution in the 
Shapiro–Wilk test.

█   RESULTS
The total distance covered, velocity, and number of squares 
entered in the OF test were significantly lesser in the TBI group 
than in the sham group (p<0.01) (Table I, Figure 2.). The total 

Figure 1: Experimental design.
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Table I: Locomotor Activity Results of Experimental Groups in OF 

Control TBI TBI+tDCS tDCS+TBI+tDCS

Mean SEM Mean SEM Mean SEM Mean SEM

Total Distance (cm) 1450.79 91.97 860.00* 30.83 1120.00*** 38.37 1250.00** 25.00

Velocity (cm/s) 5.25 0.22 3.50* 0.10 4.00** 0.16 4.30** 0.08

The number of squares entered 70.00 2.74 55.00* 1.05 63.00** 1.28 65.00** 1.30

TBI: Traumatic brain injury, tDCS: Transcranial direct current stimulation, OF: Open field. *p<0.01 compared to sham, **p<0.05, ## p<0.01  
compared to TBI, one-way ANOVA test, followed by Tukey post hoc test. All data are presented as means ± SEM, n=10 for each group).

Table II: Learning Results of Experimental Groups in NOR

Control TBI TBI+tDCS tDCS+TBI+tDCS

Mean SEM Mean SEM Mean SEM Mean SEM

Discrimination index (%) 55.00 1.69 36.00* 4.60 42.00** 2.32 46.00*** 3.00

Exploration time of the novel object (s) 40.67 1.18 29.00* 2.51 34.00** 1.84 36.00** 2.00

TBI: Traumatic brain injury, tDCS: Transcranial direct current stimulation, NOR: Novel object recognition. *p<0.01 compared to sham, **p<0.05,  
***p<0.01  compared to TBI, one-way ANOVA test, followed by Tukey post hoc test. All data are presented as means ± SEM, n=10 for each group).

Figure 2: Behavioral results of the experimental groups. A) Total distance (cm), B) Velocity (cm/s), and C) Number of squares entered in 
the open field test. ** p<0.01 vs. sham, # p<0.05 vs. TBI, n=10 for each group.

A

B C
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and inflammation. The hippocampus plays a fundamental role 
in neuronal plasticity, perception, memory, emotion, spatial 
navigation, and orientation. TBI causes learning and memo-
ry impairment. In this study, learning and memory impairment 
were found in the TBI group. Furthermore, tDCS stimulation 
produced a therapeutic effect on the impaired learning and 
memory as well as the locomotor activity. There is a need 
to develop treatment protocols that not only produces neu-
roprotective effects but also can be used prophylactically in 
individuals at high risk of developing TBI. This could minimize 
the damage that individuals who are at high risk for recurrent 
head trauma would experience in their sports or professional 
life. In our study, the findings in the tDCS + TBI + tDCS group 
demonstrated the prophylactic efficacy of tDCS. Thus, tDCS 
can be considered a treatment option for TBI, as well as a 
prophylactic against the development of TBI.

Decreased locomotor activity in animals indicates a loss of 
motor function. In this study, the locomotor activity in rats 
decreased after mTBI. However, tDCS application reduced 
the loss of locomotor activity. Moreover, the locomotor activity 
of tDCS + TBI + tDCS and TBI + tDCS groups was similar 
to that of the sham group. Thus, tDCS application not only 
improved the mTBI-induced loss of motor function but also 
increased the locomotor activity to almost normal. Similar to 
the locomotor activity results, tDCS application also decreased 
the TBI-induced cognitive dysfunction. Our study findings are 
similar to those of previous studies (8,11,27). Kim and Han 

distance covered, velocity, and number of squares entered 
were significantly more in the tDCS + TBI + tDCS and TBI + 
tDCS groups than in the TBI group (p<0.05). The discrimination 
index and time spent exploring the novel object in the NOR 
test were significantly lesser in the TBI group than in the sham 
group (p<0.01) (Table II, Figure 3). Both the discrimination index 
and time spent exploring the novel object were significantly 
more in the tDCS + TBI + tDCS and TBI + tDCS groups than in 
the TBI group (p<0.05). The calcium, glutamate, and NMDAR1 
levels in the hippocampus were significantly higher in the TBI 
group than in the sham group (p<0.01) (Table III). The calcium, 
glutamate, and NMDAR1 levels were significantly lower in the 
tDCS + TBI + tDCS and TBI + tDCS groups than in the TBI 
group (p<0.05).

█   DISCUSSION
TBI following head trauma remains an important health con-
cern despite groundbreaking advances in medicine. The pri-
mary injury occurs immediately after trauma. However, prima-
ry damage alone is not responsible for the trauma-induced 
brain damage. Secondary injury is observed hours or days 
after the primary injury. Secondary injury is associated with 
a poor prognosis in patients with TBI (17). The mechanisms 
leading to secondary damage include neurotransmitter re-
lease, reactive oxygen species generation, calcium-depen-
dent cell damage, gene activation, mitochondrial dysfunction, 

Table III: ELISA Results of Ca2+, Glutamate and NMDAR1 Levels

Control TBI TBI+tDCS tDCS+TBI+tDCS

Mean SEM Mean SEM Mean SEM Mean SEM

Ca2+ (μg/ml/g protein) 1.10 0.05 1.53* 0.04 1.35** 0.03 1.28** 0.03

Glutamate (μg/ml/g protein) 0.80 0.05 1.20* 0.07 0.99** 0.02 0.92*** 0.02

NMDAR1 (μg/ml/g protein) 1.11 0.05 1.90* 0.21 1.75** 0.12 1.64** 0.12

TBI: Traumatic brain injury, tDCS: Transcranial direct current stimulation, NMDAR: N-Methyl-D-Aspartate receptor, *p<0.01 compared to sham, 
**p<0.05, ***p<0.01 compared to TBI, one-way ANOVA test, followed by Tukey post hoc test. All data are presented as means ± SEM, n=10 for 
each group).

Figure 3: Learning results of the experimental groups. A) Discrimination index (%) and B) time spent exploring the novel object (sec) in 
the novel object recognition test. **p<0.01 vs. sham, #p<0.05 vs. TBI, n=10 for each group.

A B
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head traumas can cause chronic traumatic encephalopathy 
(15), which may manifest as memory disorders, altered moods, 
and behavioral changes, especially in professional boxers after 
several years of boxing. Recently, it has been recognized that 
repeated TBIs in professional players in various sports lead to 
progressively more serious consequences (15). Although most 
of these incidents occur in martial sports, similar situations 
can also be observed in professional hockey, football, and war 
(15). Repeated TBIs can cause permanent damage and affect 
people’s lives.

Traumatic neural damage causes an increased conduction 
response to AMPAR agonists. Damaged neurons demon-
strate increased AMPAR ion transmission, hyperexcitability, 
increased intracellular free calcium concentrations, and sen-
sitivity to other synthetic glutamate receptor analogs at non-
toxic concentrations (7). When there is a decrease in AMPAR 
desensitization or hypersensitivity, the neurotoxicity that de-
velops due to a TBI-induced short-term increase in synaptic 
glutamate may lead to hyperexcitability, cell damage, and 
death. In addition to AMPAR-dependent hyperexcitability, in-
creased NMDAR activity has also been noted in several TBI 
studies. The association of intracellular NMDARs with reactive 
oxygen and nitrogen particles causes a lethal ion influx, par-
ticularly that of calcium ions, after glutamatergic stimulation 
(18). During excitotoxicity, mitochondria maintain intracellular 
calcium balance by retaining excess free calcium (3). Stud-

demonstrated that application of 0.2 mA of anodal tDCS for 
30 min reduces the loss of motor function after TBI (11). Yu 
et al. also reported that application of 0.2 mA of anodal tDCS 
for 30 min improved the loss of motor and cognitive function 
caused by TBI (27). In our study, application of anodal tDCS 
(0.5 mA for 30 min for 2 days) reduced the loss of locomotor 
and cognitive function caused by mTBI.

Glutamate is the main excitatory neurotransmitter involved in 
intracellular communication, synaptic plasticity, cell growth, 
and neuronal as well as glial cell death. Glutamate stimulates 
calcium channel receptors such as NMDA, leading to 
ischemic neuronal damage and intracellular calcium increase. 
These trigger events which consequently result in enzymatic 
cellular death (16,22). Yi and Hazell demonstrated that brain 
trauma causes an increase in the extracellular concentration 
of the excitatory neurotransmitter glutamate (26). Disruption 
of calcium-mediated exocytosis and presynaptic membrane 
ion pumps causes glutamate release from neurons because 
of depolarization (3,5). This neurotransmission is believed to 
cause a toxic increase in intracellular calcium concentration. 
The results of our study are similar to those reported in the 
literature. We found a significant increase in the glutamate 
and calcium levels following TBI. tDCS application decreased 
the elevated levels of glutamate and calcium. In particular, 
it demonstrated a significant therapeutic effect, as well as a 
protective effect, in the tDCS + TBI + tDCS group. Repeated 

Figure 4: Enzyme-linked immunosorbent assay results of the experimental groups. A) Calcium, B) glutamate, and C) N-methyl-d-
aspartate receptor 1  levels in the hippocampus. **p<0.01 vs. Sham, #p<0.05 vs. traumatic brain injury, n=10 for each group.

A

B C
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