Microsurgical Treatment of Tuberculum Sellae Meningiomas with Visual Impairments: A Chinese Experience of 56 Cases

Hui ZHOU1, 2, Zhen WU1, Liang WANG1, Junting ZHANG1

1Capital Medical University, Beijing Tiantan Hospital, Department of Neurosurgery, Beijing, China
2Xuzhou Medical College, Lianyungang Hospital, Department of Neurosurgery, Lianyungang, Jiangsu Province, China

Corresponding Author: Junting ZHANG / E-mail: zhangjunting2003@aliyun.com

ABSTRACT

AIM: Tuberculum sellae meningiomas (TSMs) are suprasellar lesions that commonly extend to the medial side of the optic nerve, resulting in visual impairments in the affected eye as the initial and most common symptoms. The primary goal of surgical treatment for TSM is the preservation or improvement of visual function. The aim of the present study was to assess the clinical outcomes of TSMs treated with microsurgery at our center.

MATERIAL and METHODS: A retrospective analysis was performed on 56 patients with TSMs associated with visual impairments who visited our neurosurgery center between January 2008 and January 2012. These patients underwent microsurgery using the unilateral subfrontal approach (n=22), the lateral frontal base approach (n=28), or the frontotemporal approach (n=6). Outcomes were complete tumor removal, improvements of visual impairments and survival to the surgery. After surgery, patients were classified according to Simpson classification: Grade I in 22 cases, grade II in 28 cases, and grade IV in 6 cases.

RESULTS: Postoperatively, visual impairments were improved in 47 cases, unchanged in 7 cases, and worsened in 2 cases. There was no patient’s death.

CONCLUSION: TSMs are operated in China with favorable outcomes.

KEYWORDS: Meningioma, Microsurgery, Sella turcica, Visual disorders

INTRODUCTION

Meningiomas represent about 33% of all brain tumors, and tuberculum sellae (TS) meningiomas (TSM) represent about 5-10% of meningiomas, with an estimated prevalence of 12,750 cases in the United States (1, 12, 14, 22). TSMs arise from the dura of the TS, the chiasmatic sulcus, the limbus sphenoidale, the sphenoid planum, or the diaphragma sellae. Because of the anatomic proximity of the lateral end of the TS to the optic canal, the tumor tends to extend into the optic canal underneath the nerve. As the tumor grows, it compresses the optic nerve, the internal carotid artery, the pituitary and the pituitary stalk (11, 19), resulting in the typical clinical feature of TSMs, i.e. primary optic atrophy with bitemporal hemianopsia. Visual impairments in the affected eye are the initial and most common symptoms of TSMs (3, 11).
Therefore, the goal of the surgical treatment for TSM is the total resection of the tumor and the preservation or improvement of the visual function (2). However, because of the proximity to important anatomic structures, the surgery of these TSMs is complex. Surgical approaches for TSMs include the bifrontal approach, the unilateral subfrontal approach, the frontotemporal pterional approach, the orbitocranial (or orbitozygomatic) approach, the combined extradural and intradural approach, and the transsphenoidal approach (1, 5, 6, 13).

There is a lack of data about the treatment of TSMs in China. Therefore, the aim of this retrospective study was to analyze 56 consecutive cases of surgically resected TSMs since 2008 in our institute (China). Total resection of the tumor and improvement of postoperative visual function were assessed as primary outcomes.

MATERIAL and METHODS

Subjects

This retrospective study was carried out at the skull base department of neurosurgery center in Beijing Tiantan Hospital, Capital Medical University. A total of 56 consecutive TSM patients with visual impairments were enrolled in the present study, from January 2008 to January 2012. Patients had to suffer from visual impairment and to have an imagery-based diagnosis of TSM. The present study was approved by our ethical committee, and an individual consent was waived.

Imaging

All patients underwent imaging examinations including computed tomography (CT) and magnetic resonance imaging (MRI), as well as eye examinations in the immediate preoperative and postoperative period. Gadolinium-enhanced MRI and magnetic resonance angiography (MRA) were used to show the relationship between the tumor and the cerebral arteries, the optic nerve, the pituitary stalk and the internal carotid arteries. Gadolinium-enhanced T1 axial MRI was used to show the potential encasing of the internal carotid arteries. Gadolinium-enhanced T1 sagittal MRI was used to determine if the mass had a dural base on the planum sphenoidale, chiasmatic sulcus, and TS, and if the sella turcica was not enlarged. Gadolinium-enhanced T1 coronal MRI was used to show the relationship between the tumor and the internal carotid arteries, middle cerebral arteries, and anterior cerebral arteries on both sides of the mass. T2-weighted imaging (T2WI) was used to show isointense or hyperintense signal intensity, which could reveal the edema surrounding the tumor.

Surgical Approach

The surgery was performed using the unilateral subfrontal, the lateral frontotemporal base approach or the frontotemporal approach, according to the tumors’ size, location, growth pattern and adjacent relationship to important structures (2, 8, 12). These three methods are the only ones used in our hospital. The unilateral subfrontal approach was used for medium tumors mainly located in the midline with a wide base and bilateral growth. The lateral frontotemporal base approach was used for some medium tumors and small tumors, mostly growing unilaterally. The frontotemporal approach was used for the large tumors and the medium tumors growing from the midline to the one-side anterior clinoid process.

The rotation angle of the head to the contralateral side varied according to the surgical approach (30° head rotation for the unilateral subfrontal approach, and 30-45° head rotation for the lateral frontotemporal base approach and the frontotemporal approach).

The incision approaching the hairline arc, progressing ahead and passing through the midline was different according to the surgical approach (to the lateral superior temporal line for the unilateral subfrontal approach, and about 2 cm over the midline for the lateral frontal base approach and the frontotemporal approach). The craniotomy was performed on the lateral frontal bone and the temporals muscle was stripped from the superior temporal line and retracted to the lateral side. An incision of the temporals muscle and retraction to the temporal base is required for the frontotemporal craniotomy. After entering the skull, the sphenoid ridge was slacked for the frontotemporal craniotomy, to ensure the exposure of the bilateral blood vessels of the Sylvian fissure.

If the ipsilateral optic nerve was closely adhering to the tumor, the arachnoid membrane gap outside the tumor was separated through the second gap, and the tumor underneath the optic nerve was dissociated sharply. If MRI showed that the tumor invaded the optic canal, considering that the tumor vessels underneath the shuttle of the dura mater of the optic canal are in a blind spot, the dura mater of the skull base at the medial anterior clinoid process was cut with a sharp knife and was shrunk using the bipolar coagulation tool or removed sharply. After devascularization, the tumor was detached and removed pieces by pieces. The hyperplastic dura mater on the tumor vessels was removed. In the present study, there was no case of drilling into the sphenoid sinus. The bone was ground, and bone wax was routinely applied. The grinding surface was smoothed with a small piece of cottonoid.

Follow-up

All 56 patients were followed-up regularly by the Neurosurgery and Ophthalmology Departments at 3-month intervals. The follow-up period varied from 1 to 36 months (mean follow-up time duration of 27.47±7.22 months). Visual examinations and MRI were performed during follow-up.

Outcomes

Outcomes were the complete removal of the tumor, improvements in visual function according to the visual grading system (2), and survival to the surgery.

Statistics

Only descriptive statistics were used in the present study.
RESULTS

Patients’ Characteristics

Table I shows the patients’ characteristics. Fifty-six patients were included (26 males and 30 females), with a mean age of 42.5 years (range: 21 to 69 years). The duration of disease ranged from 1 month to 4.3 years. The median duration of visual impairment symptoms was 14 months. There were 34 cases (60.7%) of monocular visual impairments, and 22 cases (39.3%) of binocular visual impairments, including 4 cases (7.1%) complicated by monocular blindness. Visual field defect was detected in 31 cases (55.4%). There were 25 cases (44.6%) of vision decrease without changes in visual field, and 2 cases (3.6%) of visual field defect without vision decrease. In accordance with the visual grading system (grade 1: <0.1 to 0.05; and grade 2: <0.3 to 0.1 (2), 22 patients (39.3%) had low vision under grade 2, and 34 patients (60.7%) had low vision more than grade 2. Fundus examination showed 36 cases (64.3%) of optic atrophy, including 16 cases (28.6%) of bilateral optic atrophy and 20 cases (35.7%) of unilateral optic atrophy; 16 cases (28.6%) with unilateral or bilateral edema of the optic papilla; and 4 cases (7.1%) with normal optic papilla.

Imagery

Figure 1A-C shows a typical preoperative MRI showing that the tumor, as a round or oval space-occupying lesion, was located in the suprasellar area. MRI revealed that the lesions were uniformly enhanced and that a “dural tail” sign was seen in most lesions.

Tumors’ Characteristics

In this present study, 15 patients had tumors growing to the lateral and upper lateral side, pushing and wrapping around the optic nerve and the cerebral arteries; 22 cases with tumors compressing downward the optic nerve and optic chiasm; and 19 cases with tumors compressing upward and outward the optic nerve and optic chiasm, including 8 cases with tumors growing to the saddle back and compressing the pituitary stalk and hypothalamus. Maximum tumor diameter was large (>5 cm) in 6 cases, medium (3 to 5 cm) in 26 cases, and small (<3 cm) in 24 cases (Table II).

Surgeries’ Characteristics

Table II shows the surgeries’ characteristics and Figure 2 shows a TSM during surgery. Simpson Grade I resection (total resection of tumor and hyperplastic dura mater and grinding of hyperplastic skull) was performed in 22 cases, Grade II

Table I: Patients’ Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>26 (46.4%)</td>
</tr>
<tr>
<td>Female</td>
<td>30 (53.6%)</td>
</tr>
<tr>
<td>Age, mean (range)</td>
<td>42.5 (21-69) years</td>
</tr>
<tr>
<td>Disease duration</td>
<td>1 month-4.3 years</td>
</tr>
<tr>
<td>Duration of symptoms, median</td>
<td>14 months</td>
</tr>
<tr>
<td>Visual impairments</td>
<td></td>
</tr>
<tr>
<td>Monocular</td>
<td>34 (60.7%)</td>
</tr>
<tr>
<td>Binocular</td>
<td>22 (39.3%)</td>
</tr>
<tr>
<td>Monocular blindness</td>
<td>4 (7.1%)</td>
</tr>
<tr>
<td>Visual defect</td>
<td></td>
</tr>
<tr>
<td>Vision decrease alone</td>
<td>25 (44.6%)</td>
</tr>
<tr>
<td>Visual field defect alone</td>
<td>2 (3.6%)</td>
</tr>
<tr>
<td>Low vision under grade 2</td>
<td>22 (39.3%)</td>
</tr>
<tr>
<td>Low vision above grade 2</td>
<td>34 (60.7%)</td>
</tr>
<tr>
<td>Optic atrophy</td>
<td></td>
</tr>
<tr>
<td>Unilateral</td>
<td>36 (64.3%)</td>
</tr>
<tr>
<td>Bilateral</td>
<td>20 (35.7%)</td>
</tr>
<tr>
<td>Edema of the optic papilla</td>
<td>16 (28.6%)</td>
</tr>
<tr>
<td>Normal optic papilla</td>
<td>4 (7.1%)</td>
</tr>
</tbody>
</table>

Figure 1: A 49-year-old man had a 23 mm meningioma that had been removed totally through a right lateral frontal base approach. Preoperative enhanced MRI of TSM showed the tumor located at tuberculum sella, predominantly medial to optic nerve. A) The meningioma was located in the sellar region (axial image). B) The meningioma compressed the optic chiasma (sagittal image). C) The meningioma was close to the bilateral internal carotid artery (coronal image).
Among the 22 cases with binocular vision disorders, all cases had improved postoperative vision at various degrees on the less severe side, and 2 cases had deteriorated postoperative vision in the more severe side. Of the 4 cases with monocular blindness, no obvious changes were observed in 3 cases after surgery, and perception of light was present in 1 case after surgery, which was thought to be related to the large tumor volume and long duration of optic nerve compression.

DISCUSSION

TSMs are suprasellar lesions that commonly extend to the medial side of the optic nerve, resulting in visual impairments...
Zhou H. et al: Surgery for Tuberculum Sellae Meningiomas

In the present study, complete tumor resection was performed in 50 cases, and subtotal resection in 6, resulting in a complete tumor resection rate of 89.3%. After operation, the visual improvement rate was 83.9%. Few adverse events were observed and were successfully treated. There was no patient’s death.

The goals of TSMs surgery are: 1) complete excision of the tumor with the dural attachment; and 2) preservation of the surrounding neurovascular structures, especially the optic nerves and cerebral arteries. The main way to improve patients’ symptoms is to use microsurgery for adequate optic nerve decompression. Therefore, the postoperative recovery of visual function has become an important standard for assessing the success of surgery for TSMs (8, 12, 18, 21).

The surgical approach has been shown to have a clear impact on visual improvement (15, 20). It is reported that the mean rate of visual impairment improvement was 68.8% using the frontotemporal pterional approach (17). A previous study using the frontolateral or the fronto-orbital approach showed visual improvements in 64.9% of TSM cases, and no cases of visual deterioration (16). Studies were performed to compare the extended transsphenoidal surgery (ETSS) and the transcranial surgery (TCS) approaches, and showed that 71-81% of patients treated with ETSS had a visual improvement vs. 59-61% using TCS (7, 15). The unifrontal approach showed an improvement rate of 70% (10), while the bilateral subfrontal approach showed an improvement rate of 90.6% (4). Using the pterional approach, the visual improvement rate was particularly low, at 53.2% (3). In the present study, using the unilateral subfrontal, the lateral frontal base approach or the frontotemporal approach, 47 TSM patients (83.9%) with visual impairment had an improved postoperative vision, and two cases had deteriorated postoperative visual impairment.

The rate of complete tumor removal seems to be dependent upon the surgical approach. Indeed, in a previous study, 92.4% of TSMs were totally resected using the frontolateral or the fronto-orbital approach (16). A study using the unifrontal approach showed a total tumor resection rate of 84.2% (10), while another study using the bilateral subfrontal approach showed a total resection rate of 79.4% (4). The success rate using TCS was reported to be 86.4% and to be 83.3% using ETSS (7). The pterional approach showed a success rate of 90.3% (3). In the present study, using the unilateral subfrontal, the lateral frontal base approach or the frontotemporal approach, Simpson grade I or II resection was achieved in 89.3% of patients.

TSM surgery is performed near the sinuses, and there is a risk of sinus perforation leading to CSF rhinorrhea and to a risk of meningitis (2, 12, 21). A previous study showed a

Figure 4: The postoperative images were from the same patient as that in Figure 1. Enhanced MRI at 3 months after surgery (a-c). A) The TSM was completely removed (axial image). B) The pituitary stalk returned to its normal position (sagittal image). C) The meningioma between bilateral internal carotid arteries was completely removed (coronal image).
postoperative comorbidity rate of 16.1%, including seizures, and impaired mental functions (3). Another study observed CSF rhinorrhea, infarction, seizures and transient diabetes insipidus, but no mortality (16). In the present study, the 2 cases of cerebrospinal fluid rhinorrhea were both caused by the unilateral subfrontal approach. The most frequent complication was diabetes insipidus. No patient dies from the surgery.

The present study has several limitations. First, it was performed in a small number of patients. Furthermore, no control or comparator group was used. In the future, we will aim toward performing a larger multicentre study to compare the different surgical approaches available to treat TSMs.

CONCLUSION

In conclusion, using three different approaches, TSMs are operated in a Chinese center with a high surgical success rate and a high rate of improvements in vision. The rate of complications was acceptable.

REFERENCES