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Neuroprotective Effects of Pregabalin Against Spinal Cord 
Ischemia-Reperfusion Injury in Rats

ABSTRACT

AIm: To evaluate the effect of pregabalin pre-treatment on spinal cord ischemia-reperfusion (I/R) injury and compare with 
methylprednisolone (MP).  
mATERIAl and mEThODS: Thirty-two rats were randomly divided into four groups as follow: Group 1 (sham)(n=8), group 2 
(ischemia only)(n=8), group 3 (30 mg/kg pregabalin)(n=8), and group 4 (30 mg/kg methylprednisolone)(n=8). Laparotomy was 
performed without aortic clamp in the sham group. All animals were killed 24 hours after surgery. The spinal cord tissue samples 
were harvested and caspase-3 activity, tumor necrosis factor-alpha (TNF-α) and Interleukin-1 Beta (IL-1β) levels, catalase (CAT) 
activity, glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) levels malondialdehyde (MDA) levels and nitric oxide 
(NO) levels were analyzed to investigate the effects of different excitatory and inflammatory pathways in mechanism of I/R injury. 
Ultrastructural and histopathological examinations were carried out. Neurological recovery was measured by Basso, Beattie, 
Bresnahan (BBB) test and Inclined Plane Test.    
RESulTS: Decresead caspase-3 activity and decreased inflammatory markers like TNF-α, IL-1β, and decresaed excitotatory 
pathways like CAT, GPx, MDA, NO and SOD were observed in both pregabalin pre-treatment and MP treatment groups. Pregabalin 
pre-treatment produced better ultrastructural results compared to MP treatment, as with histopathological examination. Pregabalin 
group showed better recovery compared to MP treament group according to BBB scoring system.  
COnCluSIOn: Pregabalin pre-treatmet and MP treatment both has neuroprotective effect on I/R injury by decreasing caspase 
dependant apoptosis, and inflammatory and oxidative stress markers. In addition, pregabalin pre-treatment had better clinical 
effects compared to MP treatment.        
KEywORDS: Pregabalin, Methylprednisolone, Spinal cord injury, Neuroprotection
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█    InTRODuCTIOn
Despite the advances in operative and non-operative tech-
niques to minimise the incidence of neurological complica-
tions resulting from the spinal cord ischemia and reperfusion 
(I/R) injury, paraplegia remains a devastating complication 
of thoraco-abdominal aortic surgery. I/R injury of the spinal 
cord activates complex pathological cascades that leads to 
neuronal damage via necrosis or apoptosis (8,14). Although 
pathogenic mechanisms of spinal cord I/R injury are not un-
derstood completely, it is now well established that oxidative 
stress resulting from the overproduction of reactive oxygen 
species with the depletion of endogenous antioxidant defense 
systems plays a pivotal role in the formation of I/R injury (7,29). 
These oxygen derived free radicals cause lipid peroxidation of 
highly vulnerable cell membranes and inflammatory cytokine 
production that further exacerbate secondary neuronal dam-
age (23).

Pregabalin is an agent recently used for neuropathic pain as 
in diabetic neuropathy, neuralgia and complex regional pain 
syndrome (13). Gamma-aminobutyric acid (GABA) is the 
chemical structure of pregabalin. Pregabalin does not bind 
to the GABA receptors. It binds at the α2δ subunit of the 
voltage-controlled calcium channels that reduces Ca2+ influx 
at the presynaptic nerve endings and the release of some 
neurotransmitters, including glutamate and noradrenalin (12). 

In this study, pregabalin is used in spinal cord I/R injury in rats. 
We aimed to investigate its effectiveness on ischemic injury 
and compare with methylprednisolone therapy.

█    mATERIAl and mEThODS
The Ethical Animal Laboratuary Experiment Commite of 
Ankara Training and Research Hospital approved this study 
with the file number 136 on 09.August.2012. The experimental 
procedures for investigation of the neuroprotective effect of 
pregabalin against spinal cord ischemia-reperfusion injury in 
rats. Thirty-two adult Wistar Albino rats were randomly divided 
into four groups, each group had eight rats weighting 250±20 
grams. These groups were: 

Group 1: Sham group (n=8) - Laparotomy only without aortic 
clamping. Rats were sacrificed and spinal cord samples were 
obtained. 

Group 2: Ischemia only group (n=8) - Rats underwent transient 
global spinal cord ischemia. The rats were sacrificed and 
spinal cord samples were removed 24 hours after ischemia.

Group 3: Methylprednisolone (MP) group (n=8)  - IR was 
performed similar to group 2. Rats received intraperitoneally 
30 mg/kg daily dose of MP (Prednol, Mustafa Nevzat, Turkey) 
after ischemia. 

Group 4: Pregabalin group (n=8)- Rats received intraperitone-
ally 30 mg /kg daily dose of pregabalin for one week before 
IR procedure. Twenty-four hours later, the rats were sacrificed 
and the spinal cord samples were collected.

Anesthesia and Surgical Procedure

The conditions of the enviroment that rats kept under were 
air temperature at 22–25 °C, with appropriate humidity and 
a 12-hour light cycle and granted free access to food and 
water. Anesthesia was given with an intraperitoneal injection 
of 10 mg/kg xylazine (Rompun, Bayer, Turkey) and 50 mg/
kg ketamine (Ketalar, Parke Davis, Turkey), and allowed to 
breathe spontaneously. A rectal probe was inserted, and the 
animals were positioned on a heating pad that maintained the 
body temperature at 37 °C. 

Spinal cord I/R was  induced using the previously described 
method with slight modifications. The subjects were operated 
in the supine position. The aorta was isolated transperitoneally. 
Five minutes before occlusion 150 IU/kg heparin was admin-
istered intravenously. The aorta was then cross-clamped just 
inferior to the left renal artery under a surgical microscope 
using 2 aneurysm clips (Yasargil FE 721; Aesculap, Tuttlin-
gen, Germany). Pulsation of the femoral artery disappeared. 
The clamps were removed after 30 minutes and return of the 
aortic pulse was  visually  verified.  Then, the surgical wound 
was closed in layers with a sterile 6-0 silk suture. There was no 
limitation of food and water after 2 hours postoperatively. Rats 
in the sham group underwent the same procedure, without 
clamping the aorta. The animals were sacrificed 24 hours after 
the operation by injection of 200 mg/kg pentobarbital (Nem-
butal, Oak Pharmaceuticals, Lake Forest, IL, USA). Spinal cord 
segments between L2 and S1 were carefully harvested by 
laminectomy. Then, spinal cord samples cut into three equal 
parts. Cranial part of spinal cord samples were examined with 
light microscope, the second sections were examined for 
electron microscope and the cleared caudal parts were put in 
-80 °C for analyse.

Biochemical Procedures 

Tissue caspase-3 analysis: Caspase-3 was analysed 
using the ELISA kit (Uscn Life Science Inc. Wuhan). Sandwich 
enzyme immunoassay method was used with this kit. Specific 
antibody was used to coat the microplatekit that is specific to 
caspase-3. The results are expressed as U/g-protein.

Tissue tumor necrosis factor-alpha (TnF-α)  analysis: 
TNF- α activity was analysed using  the ELISA kit. Sandwich 
enzyme immunoassay method was used with this kit. Specific 
antibody was used to coat the microplatekit that is specific to 
TNF- α. The results are expressed as U/g-protein.

Tissue Interleukin-1 beta (IL-1β) analysis: IL-1β was analysed 
using  the ELISA. Sandwich enzyme immunoassay  method 
was used with this kit. Specific antibody  was used to coat 
the microplatekit that is specific to IL-1β. The results are 
expressed as U/g-protein.

Tissue Glutathione Peroxidase (GPx) analysis: GPx was 
analysed using  the ELISA kit. Sandwich enzyme immunoas-
say  method was used with this kit. Specific antibody was 
used to coat the microplatekit that is specific to GPx. The re-
sults are reported as U/g-protein. 

Tissue catalase (CAT) analysis: CAT was analysed using the 
ELISA. Sandwich enzyme immunoassay  method was used 
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with this kit. Specific antibody was used to coat the micro-
platekit that is specific to CAT. 

Tissue malondialdehyde (MDA) analysis: The tissue MDA 
levels were examined with a method reported by Ohkawa 
et al. based on the reaction with thiobarbituric acid (TBA) 
reaction (22).  

Tissue nitric oxide (NO) analysis: For analysing tissue NO 
levels the method of Miranda et al. (20) was used. The results 
were reported as nmol/mg protein. 

Tissue superoxide dismutase (SOD) analysis: SOD (EC 
1.15.1.1) was proceeced with the method of Sun et al.( 27). 
Superoxide dismutase levels were reported as U/mg-protein. 

histopathological Procedures 

The spinal cord tissues were put in paraffin and fixed with 
10% buffered formalin for  24 hours for all groups. Using a 
microtome, 5 µm-thick serial sections were stained with he-
matoxylin-eosin (H&E). A neuropathologist observed all tissue 
sections who was blinded to the study design. 

For spinal cord tissue samples, a semiquantitative scoring 
system was used and both histopathological changes and the 
neuronal degenerative signs were observed. Histopathologi-
cal changes were scored as; 0: absent; 1: mild; 2: moderate; 
and 3: common. Specimens were scored based on these four 
different parameters. The number of normal motor neurons in 
the anterior horn of the spinal cord was counted in 3 sections 
for each animal and then averaged. 

ultrastructural examination 

Semi-thin sections  of  approximately  2 µm in thickness and 
ultrathin sections of approximately 60 nm thickness were cut 
with ultramicrotome. The semi-thin sections were stained 
with methylene blue and examined under light microscope. 
After this examination, the tissue blocks were stained with 
uranyl acetate and lead citrate. All the ultra thin sections 
were examined using a transmission electron microscope. 
Myelinated axons, evaluated and scored from 0 to 3 as 
described by Kaptanoglu et al. (16): 

0: Normal myelinated axon 

1: Myelin configuration separation 

2: Myelin configuration interruption 

3: Presence of honeycomb in the myelin configuration

Statistical Analysis

Data analysis was performed by using IBM SPSS Statistics 
version 17.0 software (IBM Corporation, Armonk, NY, USA). 
Whether the distributions of continuous variables were 
determined by  using Shapiro Wilk test. For the evaluation 
of homogeneity, Levene test was used. While, the mean 
differences among groups were analyzed by One-Way 
ANOVA,  otherwise, Kruskal Wallis test was applied for 
comparisons of the  medians. Post hoc Tukey HSD or 
Conover’s multiple comparison test were used to know which 
group differ from which others. A p value less than 0.05 was 
considered statistically significant.

█    RESulTS
Tissue caspase-3 activity:  In the ischemia group, caspase 3 
activity considerably increased in comparison to sham group 
(p<0.0001). Compared with the trauma group (p<0.0001), 
caspase 3 activity considerably decreased both in MP and 
Pregabalin treatment and there was not any important 
differences between them (p=0.9499) (Figure 1A).

 Tissue TnF-α levels:  In the ischemia group, the tissue level 
of TNF was considerably increased in comparison to sham 
group (p<0.0001) (Figure 1B). Compared with the trauma 
group (p<0.0001), tissue levels of TNF were considerably 
decreased both in MP and Pregabalin treatment and there 
was not any important differences between them (p=0.9162).

Tissue IL-1 β Activity: In the ischemia group, IL-1 β activ-
ity considerably increased in comparison to sham group 
(p<0.0001). Compared with the ischemia group (p<0.0001), 
IL-1 β activity was considerably decreased both in MP and 
Pregabalin treatment and there was not any important differ-
ences between them (p=0.9751)(Figure 1C).

Tissue GPx activity: In the ischemia group, tissue GPx 
activity considerably increased in comparison to sham 
group (p<0.0001). Compared with the ischemia group (p < 
0.0001), GPx activity was considerably decreased both in MP 
and Pregabalin treatment and there was not any important 
differences between them (p = 0.7750) (Figure 1D).

Tissue Catalase Activity: In the ischemia group, catalase 
activity considerably increased in comparison to sham group 
(p<0.0001). Compared with the ischemia group, catalase ac-
tivity was considerably decreased both in MP (p<0.0001) and 
Pregabalin (p=0.0002) treatment and there was not any impor-
tant differences between them (p=0.9803) (Figure 1E).

Tissue mDA levels:  In the ischemia group, the tissue MDA 
levels considerably increased in comparison to sham group 
(p<0.0001). Compared with the ischemia group (p<0.0001), 
tissue MDA levels were considerably decreased both in MP 
and Pregabalin (p=0.7396) treatment and there was not any 
important differences between them (p = 0.7396) (Figure 1F).

Tissue nO levels: In the ischemia group, the tissue NO lev-
els considerably increased in comparison to sham group 
(p<0.0001). Compared with the ischemia group (p<0.0001), 
tissue NO levels were considerably decreased both in MP and 
Pregabalin treatment and there was not any important differ-
ences between them (p=0.5088) (Figure 1G).

Tissue SOD activity:  In the ischemia group, the tissue SOD 
activity considerably increased in comparison to sham group 
(p<0.0001). Compared with the ischemia group, tissue SOD 
activity was considerably decreased both in MP and Prega-
balin (p=0.0031) treatment and there was not any important 
differences between them (p=0.7361) (Figure 1H).

histopathology light microscopy Examination

The neurons of spinal cord samples from the sham group were 
not significantly different from normal neurons when they were 
examined under the light microscope (Figure 2A). In the isch-
emia group, histological transformations were observed.              
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Figure 1A-h: Bar Graphs representing the biochemical pathway results as mean ± SE. Statistical analysis were done as One-Way 
ANOVA (Post hoc Tukey comparisons);  (alfa) Sham vs Ischemia (p<0.0001), (ß) Ischemia vs MP (p<0.0001), (ß) Ischemia vs Pregabalin 
(p<0.0001). There was no statistically significant difference between MP and Pregabalin (p>0.05). 
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Normal motor neuron numbers in anterior horn of the spinal 
cord were also evaluated. The number of motor neurons were 
considerably lower in the ischemia group compared with the 
sham group (p<0.0001). The number of normal motor neurons 
in the MP treatment and Pregabalin treatment groups were 
considerably higher than the  ischemia group (p<0.0001). 
When we consider number of normal motor neurons there 
is not any statistically considerable difference (p=0.8329) 
between the MP and Pregabalin treatment groups (Figure 3B).

Electron microscopy

There was no ultrastructural examination of the gray matter. 
All sized myelinated axons were ultrastructurally normal in the 
white matter (Figure 4A).

In this group, congestion and diffuse haemorrhage areas, neu-
ral pyknosis, cytoplasmic eosinophilia and loss of cytoplasmic 
features were seen (Figure 2B). This pathological finding seen 
in the trauma group was lessened both in MP (Figure 2C), and 
Pregabalin treatment groups (Figure 2D). 

histopathological Grading

The ischemia group had considerably higher pathological score 
compared with the sham group (p<0.0001). MP and Pregabalin 
treatment groups  both had considerably lower scores than 
the ischemia group (p<0.0001). There was not any remarkable 
difference between the  MP and the  Pregabalin treatment 
groups (p=0.8665) (Figure 3A). 

There was not any remarkable difference between the MP and 
the Pregabalin treatment groups (p=0.8665) (Figure 3A). 

Figure 2: Photomicrographs of 5-mm-thick spinal cord tissue sections from four different groups (H&E, x40). (A) Control group revealing 
spinal cord parenchyma with normal neurons (arrow). (B) Ischemia group, showing haemorrhagic areas in spinal cord parenchyma with 
highly degenerated neurons (arrows). (C) MP treatment group, showing less hemorrhagic areas with normal- appearing neurons (arrow). 
(D) Pregabalin treatment group, revealing normal- appearing neurons (arrow) with minimal haemorrhagic spinal cord parenchyma (MP: 
methylprednisolone).
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Figure 3A, B: Bar graphs representing the pathology scores of the 
study groups as mean ± SE. (alfa) Sham vs Ischemia (p<0.0001), 
(ß) Ischemia vs MP (p<0.0001), (ß) Ischemia vs Pregabalin 
(p<0.0001). There was no statistically significant difference 
between MP and Pregabalin (p>0.05) (Statistical analysis were 
done as One-Way ANOVA (Post hoc Tukey comparisons).

Figure 4: Transmission electron microscopy of the sham and 
ischemia groups. (A) micrograph shows ultrastructurally normal 
myelinated axon (B) Ischemia reperfusion injury electron 
micrograph showing seperations (*) and interruptions (arrow) in 
myelin configuration of myelinated axons. 
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Myelin configuration seperations and also interruptions were 
observed in all sized, myelinated axons in only ischemia 
group. Vacuoles and swollen mitocondria were present inside 
the cytoplasm of neurons in the gray matter. Perineural edema 
was also present (Figure 4B).

In MP treatment group swollen mitocondria and vacuoles were 
observed inside the cytoplasm of neurons in the gray matter. 
Additionally; perineural edema was also present. Separations 
in myelin configuration were  found  in  small, medium sized 
large sized myelinated axons in the white matter (Figure 5A).

In Pregabalin pre-treatment group separations and interrup-
tions in myelin configuration were observed in small sized, 
medium sized and large sized myelinated axons (Figure 5B).

In the  ultrastructural examination of the gray matter; no ul-
trastructural pathology was detected. All of the neurons were 
ultrastructurally normal (Figure 5C).

When we compare ischemic group with sham group the 
ischemia group showed more disruption in all sized myelinated 
(p<0.001). MP treatment protected the axons of only small and 
large-sized myelinated axons  from  the  ischemia (p=0. 0424 
and p=0.0448, respectively). Pregabalin treatament could not 
save any of those myelinated axons (Figure 6A-C).

neurological Outcomes

Basso-Beattie-Bresnahan (BBB) test Score: Initial BBB 
score of rats was 21 (2). Following  ischemia, there was a 
statistically significantly decrease of the mean BBB score 
in  ischemia group was decreased compared with the 
sham  group  (p<0.0001). Both the  MP and the  Pregabalin 
treatment groups showed better BBB  score outcomes 
compared with the  ischemia group (p<0.0001). Additionally 
Pregabalin pre-treatment group showed better  outcome 
compared to MP treatment group (p=0.0368) (Figure 7A).

Inclined Plane Test: The mean angle recorded in the in-
clined-plane test was significantly lower in the  rats in isch-
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Figure 5: Transmission electron microscopy of the treatment 
groups. (A) Electron micrograph showing seperations in myelin 
configuration (*) in medium and small sized myelinated axons in 
MP treatment group. (B) Electron micrograph showing seperations 
(*) and interruptions (arrow) in myelin configuration of myelinated 
axons in Pregabalin pre-treatment group. (C) electron micrograph 
showing a vacuole (v) inside the cytoplasm of a neuron and 
myelinated axons with seperation in myelin configuration (*). n: 
nucleus of neuron in Pregabalin group.
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Figure 6: The electron microscopy results showing number of 
disrupted small-, medium-, and large-sized myelinated axons as 
mean ± SE. (A) Small sized myelinated axon disruption numbers 
(alfa) Sham vs Ischemia (p<0.001), (ß) Ischemia vs MP (p<0.05), 
Pregabalin treatment group was not significantly different from 
ischemia group and/ (n.s.) not significant difference between 
MP and Pregabalin treatment groups. (B) Medium sized axon 
disruption numbers (alfa) Sham vs Ischemia (p<0.001), (n.s.) 
not statistically signicant difference of MP and Pregabalin 
treatment groups compared to ischemia. (p>0.05). (C) Large sized 
myelinated axon disruption numbers. (alfa) Sham vs Ischemia 
(p<0.001), (ß) Ischemia vs MP (p<0.05), Pregabalin treatment 
group was not significantly different from ischemia group and (n.s.) 
not significant diffrerence between MP and Pregabalin treatment 
groups. (Statistical analysis was done as Kruskal Wallis, Post hoc 
Dunn’s comparisons). 
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emia group compared to sham group (p<0.0001). The rats in 
MP and  Pregabalin treatment groups  scored better angles 
in the  inclined-plane test compared  to  the  ischemia group 
(p<0.0001 for both). There was no significant difference be-
tween the  MP  and  Pregabalin treatment groups (p=0.1839)
(Figure 7B).

█    DISCuSSIOn
Spinal cord I-R injury is a potentially devastating and unpre-
dictable complication of thoraco-abdominal aortic surgery 
that may result in paraplegia in up to 40% of patients. Several 
protective strategies have been attempted to prevent this cat-
astrophic complication, nevertheless an effective therapeutic 

Figure 7: Neurological examination results of the study groups. 
(A) Bar graphs representing BBB (Basso, Beattie, and Bresnahan) 
scores. (alfa) Sham vs Ischemia (p<0.0001), (ß) Ischemia vs MP 
(p<0.0001), (ß) Ischemia vs Pregabalin (p<0.0001). (*) Pregabalin 
treatment group showed significantly better scores compared 
to MP treatment (p<0.05). (B) Bar graphs representing angles 
performed by rats on Inclined Plane Test. (alfa) Sham vs Ischemia 
(p<0.0001), (ß) Ischemia vs MP (p<0.0001), (ß) Ischemia vs 
Pregabalin (p<0.0001). (n.s.) Pregabalin and MP treatment groups 
were not significantly different (p>0.05). (Statistical analysis was 
done as One-Way ANOVA, Post hoc Tukey comparisons). 
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management has not yet been developed. Although the ex-
act pathophysiological mechanisms of spinal cord I/R injury 
are not still completely understood, it is evidenced that initial 
ischemic injury, which is paradoxically aggravated by reperfu-
sion, causes neuronal tissue damage by activation of several 
interconnected pathological cascades including glutamate-
mediated excitotoxicity, oxidative stress, lipid peroxidation,  
inflammation and apoptosis (5,15,18).

The efficiency and safety of MP treatment has been intensely 
questioned and leading to discontinuation of its use in some 
clinical guidelines (6). According to recent studies, MP regimen 
can not be recommended as a guideline or standard of the 
acute spinal cord injury treatment (11). However, it still remains 
as a treatment option because of its role in inhibition of lipid 
peroxidation and anti-inflammatory and anti-apoptotic effects 
until it is supplanted by future evidence based therapies (22). 
As MP is widely used in the experimental models of  spinal 
cord injury, we compared the results of pregabalin with MP.

I/R injury was associated with increased oxidative stres (29). 
Oxidative stress can be defined as an imbalance between the 
increased production of reactive oxygen species (ROS) and 
inadequacy of the endogenous antioxidant defense systems 
(26). Although ROS are frequently generated spontaneously 
in the living cell during normal metabolism, excessive amount 
of ROS can damage cellular components including proteins, 
lipids, and nucleic acids, causing cellular dysfunction (3). 
Accumulation of ROS cause lipid peroxidation within the cell 
membrane, resulting in a large amount of malondialdehyde 
production. Antioxidant enzymes, such as SOD, CAT and GPx, 
are considered to be a primary defense against ROS-induced 
cellular damage (30). However, their activities are diminished 
under highly elevated oxidative stress conditions because of 
molecular damage. Previous studies showed that pregabalin 
protect tissues against oxidative stress through increasing 
in the activities of SOD, GPx and CAT and decreasing the 
MDA levels in a dose dependent manner (12,13). Consistent 
with previous results, our study demonstrated that I/R injury 
causes depletion of endogenous antioxidant enzyme activities 
and an increase in MDA levels in spinal cord tissue and these 
pathological changes were also substantially reversed by 
administration of either pregabalin or MP.

Inflammation is an important pathological process in ischemia, 
particularly during the acute phase (28). Beside their direct 
damage to the cell membranes, ROS trigger the infiltration of 
neutrophils into the injured site of the spinal cord. Neutrophils 
mediate the inflammatory response of the spinal cord to 
ischemic injury by producing inflammatory cytokines, such 
as TNF-α and IL-1ß that may recruit other inflammatory cells 
and contribute to the expansion of ischemic damage after 
reperfusion through generation of free radicals, such as NO 
(10). As with other free radicals, NO can lead to exacerbation 
of lipid, protein, and nucleic acid damage in neurons (9). Thus, 
the assay of cytokines and nitric oxide in the tissue are useful 
quantitative indicators for the extent and types of spinal cord 
I/R injury (20). In the present investigation both Pregabalin pre-
treated and MP treated gropus showed lower expression of 
inflammatory markers.
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and MP for each of the biochemical parameters, pregabalin 
produced better histopathological and ultrastructural results. 

█    COnCluSIOn
Pregabalin and MP protects spinal cord against I/R injury 
by attenuating lipid peroxidation, inflammatory markers and 
caspase dependent apoptotic pathways. It also helps to 
preserve histopathological, ultrastructural findings and helps 
to improve clinical outcome. Overall pregabalin pretreatment 
had better clinical outcome compared to MP treatment without 
any diffrence in biochemical pathways. Further studies may 
be needed for the establishment of neuroprotective activity of 
pregabalin in a time- and dose-dependent manner.
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