GOLPH3 Promotes Vascular Mimicry via the Epithelial Mesenchymal Transition in Glioblastoma Cells

Jun JIA1, Liangzhao CHU2, Xi ZENG2, Niya LONG1, Minghao DONG2, Yushi YANG1, Yaxin HU1, Jian LIU1

1Guizhou Medical University, College of Clinical Medicine, Guiyang, Guizhou 550004, People’s Republic of China
2The Affiliated Hospital of Guizhou Medical University, Department of Neurosurgery, Guiyang, Guizhou 550004, People’s Republic of China

Corresponding author: Jian LIU adamjjgray@163.com

ABSTRACT

AIM: To evaluate the relationship between Golgi phosphoprotein 3 (GOLPH3) and vasculogenic mimicry (VM) in glioblastoma cells.

MATERIAL and METHODS: Glioma tissues from 40 glioma patients with different pathological grades were collected. GOLPH3 and VM were evaluated by immunostaining in glioma tissues. Then, the correlation between GOLPH3 and VM were analyzed clinically. Additionally, a GOLPH3-downregulation lentivirus was constructed and transfected into the human primary glioblastoma cell line, U-87 MG. Afterwards, apoptosis, migration and invasion were assessed to determine the effects of downregulation GOLPH3. Then, E-cadherin and matrix metalloproteinase 2 (MMP2) were detected for assessment of the epithelial mesenchymal transition (EMT).

RESULTS: GOLPH3 and VM were found to be positively correlated following clinical analysis (p<0.01, r=0.788). Furthermore, GOLPH3 downregulation suppressed the migration and invasion of U87 MG cells (p<0.05), followed by upregulation of E-cadherin and downregulation of MMP2.

CONCLUSION: Collectively, our results demonstrate that GOLPH3 promoted VM in glioblastoma cells and that the corresponding mechanism was associated with the EMT. Our finding suggests that GOLPH3 may represent a promising therapeutic target for mitigating the recurrence and invasion of gliomas.

KEYWORDS: Glioma, GOLPH3, Vasculogenic mimicry, E-cadherin, Matrix metalloproteinase 2

INTRODUCTION

Gliomas are neuroepithelial tumors, that are often accompanied by genetic mutations such as isocitrate dehydrogenase (IDH), 1p/19q, H3K27M, V-Rel Reticuloendotheliosis Viral Oncogene Homolog A (RELA), alpha thalassemia/mental retardation syndrome X-linked (ATRX), telomerase reverse transcriptase (TERT), tumor protein P53 (TP53) and B-raf (BRAF) (20). Gliomas are globally recognized as the most common primary malignant brain tumors in adults and morbidity and mortality rates are increasing each year (17). Gliomas, especially glioblastomas, have a large blood supply, that can be used as a pathological factor to evaluate the prognosis of gliomas (2). Although anti-angiogenic drugs, including bevacizumab, have been demonstrated as promising treatments, results of anti-angiogenic treatments still lack sufficient in clinical efficacies (21).

Conspicuously different from traditional angiogenesis and vasculogenesis, vasculogenic mimicry (VM) is a novel pattern...
of a tumor blood supply without endothelial cells (5). VM was first described by Maniotis et al., who suggested that malignant tumor cells are capable of forming a rich extracellular matrix (ECM) and vasculogenic-like networks (12). Evidence of a clinical pathological connection between VM channels and gliomas has been found, showing that VM channels in gliomas correlate with increasing malignancy and higher aggressiveness (10). Appropriate antagonists have been implicated in VM channel formation in gliomas (14). However, in view of the poor prognosis of glioma patients, further elucidation of VM is needed.

The gene for Golgi phosphoprotein 3 (GOLPH3) is located on chromosome 5 (5p13.3), and GOLPH3 protein has been shown to be evolutionarily conserved (13). Previous studies have revealed that GOLPH3 is an oncogene, and genome-wide analysis of human cancers suggested potential connection between overexpression of GOLPH3 and poor progression of multiple solid tumors (15). Clinical studies have illustrated that the expression of GOLPH3 varies from grades I-III astrocytoma patients to glioblastoma patients (8). Several RNA interferences experiments have demonstrated that the roles of GOLPH3 in proliferation, migration, invasion, differentiation and apoptosis of gliomas in vitro remain unclear (1,7,24). Therefore, further elucidation of the roles of GOLPH3 in glioma vascularization is needed. Complex signaling pathways such as phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), janus kinase (JAK)/signal transducer and activator of transcription 2 (STAT2), wingless-type integration site family (Wnt), mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinases (ERK) and DNA-dependent protein kinase (DNA-PK)/myosin XVIII A (MYO18A) have been reported to have potential relationship with GOLPH3 in the progression of intracranial carcinoma (11,16). Taken together, these findings suggest that GOLPH3 may represent a driver molecule of carcinogenic factors, and may also a role as a downstream effector through the formation of protein complexes. However, the specific role of GOLPH3 in VM of gliomas has remained unknown.

In the present study, we hypothesized that GOLPH3 may regulate VM and contribute to glioma progression. To this aim, the clinical relationship between GOLPH3 and VM in glioma patients was analyzed. Furthermore, knockdown-GOLPH3 lentiviruses were constructed and transfected into the human primary glioblastoma cell line, U-87 MG, after which we performed several cellular assays in vitro.

MATERIAL and METHODS

Ethical Approval
The clinical data and tumor specimens of pathologically diagnosed gliomas (WHO I- IV) from patients were collected from April 2019 to April 2020. The clinical procedures and experiments in human primary glioblastoma cell line, U-87 MG, were approved by the Ethics Committee of Guizhou Medical University and its affiliated hospital (IRB-2019-154). All procedures performed in studies related to human participants were in accordance with the 1964 Declaration of Helsinki and its later amendments.

Cell Culture and Groupings
U-87 MG cells were obtained from the Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). All cells were cultured in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum (Hyclone, USA). All cells were cultured in a sterile incubator maintained at 37°C with 5% CO₂. According to the experimental design, the cells were divided into a blank control group, negative control group (NC), and knockdown group (KD).

Clinical Case Collection and Morphological Staining
A total of 40 glioma patients were recruited from the Affiliated Hospital of Guizhou Medical University. Clinical diagnosis by two independent senior pathologists was based on the WHO 2016 classification of the central nervous system. During surgery, the tissues were dissected, fixed in 4% paraformaldehyde solution, routinely sampled, dehydrated, paraffin embedded, and sliced (4 μm). GOLPH3 monoclonal primary antibody (mouse, monoclonal, 1:200; DAKO, USA) was used for immunohistochemical staining. Optical microscopic observation (NIKON, DS-FI2, Japan) and semi-quantitative analysis were performed as follows. The cells in each tissue section were light yellow to brown and these colors served as immuno-positive reaction. Five fields at 400x magnification were randomly selected for each slice. The staining intensity was scored based on the staining characteristics of most cells, as follows: no staining = 0, light yellow = 1, light brown = 2, and brown = 3. The percentage of positive cells was calculated as the average proportion in five fields of view scored as follows: 0~5% = 0, 6%~25% = 1, 26%~50% = 2, 51%~75 % = 3, and >75% = 4. The final score for each slice was its score for its staining intensity multiplied by its score for the percentage of positive cells, and final scores were evaluated as follows: 0 was considered to be negative, (); 1-4 was considered to be weakly positive, (+); 5-8 was considered to be moderately positive, (++); and 9-12 was considered to be strongly positive (+++), as shown in Figure 1A-D. In addition, cluster of differentiation 34 (CD34) primary monoclonal antibody (rat, monoclonal, 1:50; DAKO, USA) and periodic acid Schiff reaction (PAS) were used to assess VM. Briefly, if a cluster of endothelial-like cells (CD34) was negative in five random fields of view, lumen-like or channel structures were observed under a transmitted light microscope, simultaneously combined with PAS-positive staining. VM was identified at 400x magnification. Furthermore, the linear relationship between GOLPH3 and VM was assessed via correlation analysis.

Construction and Transfection of GOLPH3 Lentiviruses
Lentiviruses expressing full-length human GOLPH3 cDNA, as well as lentiviruses carrying short-hairpin RNA (shRNA) against GOLPH3 with an open reading frame RNA (ORF RNA) promoting GOLPH3 were constructed by Shanghai GeneChem (Shanghai, China). The RNA sequence targeting human GOLPH3 was 5’-TAGCATGAGAGAGAAGTTACA-3’. Viruses were amplified and titrated in 293T cells according to the manufacturer’s instructions. Lentiviruses containing empty plasmids (vector) were used as controls. U-87 MG cells were transfected for 72 h and were prepared for further experiments.
cDNA was synthesized according to the instructions of the reverse transcription™ first-strand cDNA synthesis kit (Thermo Fisher Scientific, USA). Amplification was performed according to FastStart Universal SYBR Green Master (Roche, Switzerland). The reaction parameters set by the PCR instrument as follows: pre-denaturation at 95 °C for 2 min; denaturation at 95 °C for 15 s; annealing for 20 s; and extension at 60 °C for 40 s. A total of 40 cycles were performed. After manual correction, relative expression levels were calculated by 2^(-ΔΔCt) method. The sequences of GAPDH primers were as follows: upstream chain, 5'-TGACTTCAACAGCGACACCCA-3'; and downstream chain, 5'- CACCCGTGTTGCTGTAGCCAAA-3'. The sequences of GOLPH3 primers were as follows: upstream chain, 5'- TAGCATTGAGAGGAAGGTTACA-3'; and downstream chain, 5'- CTGTTGGAGCATCTGACTTAC-3'.

Western Blotting

U-87 MG cells were homogenized in protein extraction reagent (Thermo Fisher Scientific, USA). Specifically, target proteins were subjected to sodium-dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to a polyvinylidene fluoride membrane (Millipore, USA) in transfer buffer. Membranes were blocked with 5% milk and incubated with primary antibody (E-cadherin, mouse, monoclonal, 1:1000, DAKO, USA; MMP2, mouse, monoclonal, 1:500, USA; GLOPH3, mouse, monoclonal, 1:500, USA) overnight at 4°C. Horseradish peroxidase-conjugated goat anti-mouse IgG (1:10,000, Thermo Fisher Scientific, USA) antibodies were applied for 2.5 h at 37°C after membranes were washed. Membranes were detected by enhanced chemiluminescence (Millipore, USA) and exposure in the dark. The optical density of each band was measured using Quantity One software (BioRad, USA). Results are reported as the optical density ratio to beta-actin.

Detection of Apoptosis

Apoptosis was detected using the APC Annexin V Apoptosis Detection Kit (Thermo Fisher Scientific, USA) according to the manufacturer’s instructions. Briefly, after U-87 MG cells were washed, 100 μL of solution (1×10^5 cells) was incubated with 5 μL of APC Annexin V for 15 min at 25°C in the dark. The cells were analyzed on a flow cytometer (Bio-Rad, S3™, USA). Green fluorescent protein (GFP) was directly excited by flow cytometry.

Wound Healing Assays

U-87 MG cells were grown to confluence in six-well plates (Corning, USA). A line by a 1-mL pipette tip was scratched in each hemisphere of the well to wound the cells. During incubation, images were taken of the intersections of the linear cell wound and each grid line at 0, 8, and 24 h. The distances between the edges of the wound were measured via imageJ software. Migration rates were calculated using the following equation: (initial distance - final distance/initial distance) × 100. Each test was repeated three times.

Transwell Assays

For invasion assays, the upper chamber was coated with 100 μL of Matrigel (BD, USA). Then, a total of 3 × 10^5 U-87 MG cells were placed into the upper chamber. The lower chamber was filled with 0.5 mL of medium containing 10% fetal bovine serum. Then, the tumor cells were incubated at 37°C for 24-48 h. Migrated or invaded cells that attached to the bottom surface of the insert were then fixed with 4% formalin and stained with crystal violet. Each test was repeated three times and nine random fields of view under 200× magnification were analyzed. Penetrated cells were counted using ImageJ.

Statistical Analysis

IBM SPSS Statistics 20.0 was used for all statistical analysis. All data are reported as the mean ± standard deviation. Chi-square tests (or Fisher’s exact tests) were used for determining significant in clinical data. Spearman correlation analysis was performed to determine the linear relationship between GOLPH3 and VM. Significant differences in the expression levels across group were determined by analysis of variance (ANOVA). p<0.05 or p<0.01 was considered to represent a statistically significant difference.

RESULTS

GOLPH3 and VM are Positively Correlated in Glioma Patients

A univariate log-rank test was used to analyze the relationship between clinical characteristics and GOLPH3 expression or VM (Table I). The WHO grade I, II, III and IV of glioma patients revealed significantly difference in both GOLPH3 expression (χ²=14.138, p<0.01) and VM expression (χ²=7.939, p<0.01). In contrast, gender, age, and lesion sites were not significantly related to GOLPH3 or VM expression. In addition, we found that VM was positively correlated with pathological grade (Figure 1E, p<0.01, r=0.854), and GOLPH3 was also positively correlated with pathological grade (Figure 1F, p<0.01, r=0.852). Furthermore, GOLPH3 and VM were found to be positively correlated following clinical analysis (Figure 1G, p<0.01, r=0.788).

Successful Construction and Transfection of Knockdown GOLPH3 Lentiviruses

According to target-tool vector plasmid design, we constructed GOLPH3-knockdown GV112 (Figure 2A) plasmids. The target of the GOLPH3-knockdown sequence was transfected into U-87 MG cells, and the hairpin structure demonstrated that interference occurred in the target gene sequence (Figure 2B). The results showed expression of GOLPH3 in cells labeled with GFP (green, Figure 2C), which suggested that knockdown- or overexpression-GOLPH3 lentiviruses were successfully transfected into host cells. In addition, qRT-PCR results showed that the GOLPH3 expression ratio was decreased significantly (Figure 2D, p<0.05) in designed KD1 and KD2 plasmids. Considering the corresponding virus titers, KD2 was chosen for further experiments.
Table I: Patients with Clinical Pathological Characteristics (n=40)

<table>
<thead>
<tr>
<th>Parameters</th>
<th>GOLPH3/n</th>
<th></th>
<th></th>
<th>VM/n</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
<td>High</td>
<td></td>
<td>Low</td>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>6</td>
<td>16</td>
<td></td>
<td>3</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>7</td>
<td>11</td>
<td></td>
<td>1</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>χ²</td>
<td>0.609</td>
<td></td>
<td></td>
<td>0.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.435</td>
<td></td>
<td></td>
<td>0.751</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥ 50</td>
<td>5</td>
<td>7</td>
<td></td>
<td>0</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>< 50</td>
<td>8</td>
<td>20</td>
<td></td>
<td>4</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>χ²</td>
<td>0.195</td>
<td></td>
<td></td>
<td>0.648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.658</td>
<td></td>
<td></td>
<td>0.421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frontal</td>
<td>3</td>
<td>11</td>
<td></td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Temporal</td>
<td>2</td>
<td>9</td>
<td></td>
<td>0</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Parietal</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Occipital</td>
<td>1</td>
<td>1</td>
<td></td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>>1 lobe</td>
<td>2</td>
<td>5</td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Cerebellum</td>
<td>4</td>
<td>0</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>WHO grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>6</td>
<td>0</td>
<td></td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>3</td>
<td>11</td>
<td></td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>1</td>
<td>9</td>
<td></td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>3</td>
<td>7</td>
<td></td>
<td>0</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>χ²</td>
<td>14.138</td>
<td><0.01*</td>
<td></td>
<td>7.939</td>
<td><0.01*</td>
<td></td>
</tr>
</tbody>
</table>

* GOLPH3 expression or VM is significantly different in different grades glioma.

Patients with gender, age, tumor location, and tumor pathological grade were analyzed significant differences in GOLPH3 expression and VM expression. Female and male shared no difference in GOLPH3 (χ²=0.609, p=0.435) and VM (χ²=0.101, p=0.751). ≥50 and <50 shared no difference in GOLPH3 (χ²=0.195, p=0.658) and VM (χ²=0.648, p=0.421). Tumor locations shared no difference in GOLPH3 (χ²=10.08, p=0.05) and VM (χ²=6.876, p=0.150). WHO grades shared significantly different in GOLPH3 (χ²=14.138, p<0.01) and VM (χ²=7.939, p<0.01). *GOLPH3 expression or VM is significantly different in different grades of glioma. n=40. VM: Vasculogenic mimicry.

Figure 1: The subcellular localization of GOLPH3 and the pathological grades correlation analysis of GOLPH3 and VM. A-D) Were different GOLPH3 subcellular immunostaining intensity following by negative, weak positive, medium positive, and strong positive. The blue was the nucleus, the black arrow indicated the immune-positive cell, and the bar was 400×. E) Suggested that VM and the pathological grade of glioma were linearly positively correlated. F) Suggested that GOLPH3 immune protein expression and the pathological grade of glioma were linearly positively correlated. G) Suggested that GOLPH3 and VM were linearly positively correlated in clinical analysis (p<0.01).
that the expression of E-cadherin protein was significantly upregulated (Figure B, D, p<0.05), whereas the expression of MMP2 protein was significantly downregulated (Figure 4B, D, p<0.05).

DISCUSSION

In the present study, clinical glioma tissues were obtained to explore the relationship between GOLPH3 and VM. RNA interference technology was used to construct GOLPH3-knockdown lentiviruses. After transfection of GOLPH3-knockdown lentiviruses in U-87 MG cells, qRT-PCR was used to detect GOLPH3 mRNA levels. Then, flow cytometry, wound healing assays and transwell assays were used to evaluate apoptosis, migration and invasion, respectively. E-cadherin and MMP2 expression levels were detected in all groups. Our results suggested that GOLPH3 and VM were positively correlated in glioma patients. Furthermore, after knockdown of GOLPH3 in vitro, apoptosis of U-87 MG cells was not affected, whereas migration and invasion were suppressed. In addition, we found that E-cadherin was upregulated while MMP2 was downregulated following GOLPH3 knockdown.
Figure 3: The role of knockdown GOLPH3 in apoptosis, invasion and migration. A, B) and C) were apoptosis analysis. No apoptosis in each group. D, E) and F) were invasion assay in each group. Nucleus was observed with a deep violet. The bar was 200×.
G, H) and I) were 0h, 8h and 24h microscopic observation of cultured cells in white light of control group. The white vertical line was the cell migration boundary. The bar was 100×. J-O) were 0h, 8h and 24h microscopic observation of cultured cells in green fluorescence of NC group and KD group. The bar was 100×.
The EMT is critical for cancer cell migration and invasion. Wen et al. (19) found that knockdown of GOLPH3 in an endometrial carcinoma cell line inhibited N-cadherin and vimentin, and stimulated E-cadherin and α-catenin, all of which associated with the EMT. Additionally, Tan et al. (18) demonstrated that the scaffolding protein, PITPNC1, Golgi apparatus of lung adenocarcinoma cell lines contributed to EMT. Moreover, knockdown of GOLPH3 has been shown to block the effects of PITPNC1 overexpression (6), indicating that PITPNC1 acts through GOLPH3. Interestingly, the results of our present study revealed that GOLPH3 downregulation in U-87 MG cells inhibited migration and invasion, suggesting that GOLPH3 may contribute to the EMT in glioma cells. What's more, Ling et al. (9) reported that inhibition of the EMT impaired VM in glioma via the p38/MAPK signaling pathway. In addition, Zhang et al. (23) illustrated that LRIG1 inhibited VM via the EMT, highlighting an interaction between VM and the EMT in the progression of gliomas. Moreover, in our present study, knockdown of GOLPH3 promoted the expression of E-cadherin and inhibited the expression of MMP2 in glioma.
cells, suggesting that GOLPH3 regulates the EMT and correspondingly leads to glioma VM.

However, some results of our present study were inconsistent with those of previous studies. After GOLPH3 overexpression, the mTOR/YB1 pathway has been shown to be activated and migration and invasion of glioma cells are increase (22). Furthermore, overexpression of GOLPH3 in vitro promotes growth via the PKD2/GOLPH3/AKT pathway (25). Since high GOLPH3 expression has been shown to be clinically associated with GBM patients (8,24), previous studies and present study may have assessed different microenvironments and employed different experimental conditions. In addition, a previous study reported that GOLPH3 siRNA-transfected U-251 cells and U-87 cells showed higher rates of apoptosis, whereas GOLPH3 downregulation did not significantly affect apoptosis in our present study. The disadvantage of this article is that there are too few clinical samples. The sample is not linked to the survival time of the relevant patient. Some negative results in the experiment are inconsistent with previous reports and cannot be explained temporarily.

CONCLUSION

Taken together, our present findings suggest that GOLPH3 promoted VM in glioblastoma cells and that the related mechanisms were associated with the EMT. Hence, GOLPH3 may represent a promising therapeutic target for ameliorating the recurrence and invasion of glioma.

ACKNOWLEDGEMENTS

The authors would like to thank the included patients who allowed for their glioma tissues to be studied. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

AUTHORSHIP CONTRIBUTION

Study conception and design: JL

Data collection: XZ

Analysis and interpretation of results: MD

Draft manuscript preparation: JJ

Critical revision of the article: LC

Investigation and Formal analysis: NL, YY

Resources and Visualization: YH

All authors (JJ, LC, XZ, NL, MD, YY, YH, JL) reviewed the results and approved the final version of the manuscript.

REFERENCES

Jia J. et al: GOLPH3 promotes VM in GBM