ABSTRACT

AIM: To see how thyroxine affects the sensory and motor function of a damaged sciatic nerve in male rats.

MATERIAL and METHODS: Forty adult male Wistar rats were allocated to four groups, 10 individuals each. Then, crush injury was done on the right sciatic nerve in all the groups using a vessel clamp. In thyroxine-treated groups and after the crush, the rats were given regular doses of thyroxine (5 and 10 µg/kg) for one week intraperitoneally. Negative control group was treated intraperitoneally with distilled water as a vehicle. In sham operated group, only surgical procedures were performed without nerve crush. Then, behavioral, histological, and morphometric parameters were assessed at the regeneration time.

RESULTS: After one week of treatment with thyroxine, the motor function improved significantly following a sciatic nerve crush (P ≤ 0.05). Also, morphometric parameters and sensory restoration improved in thyroxine-treated groups.

CONCLUSION: Findings of this study showed that neuro-protective effects of thyroxine can be due to the stimulatory effects of thyroxine in myelin sheath formation and increasing the expression of SCG10 protein which is required for the development of growth cones.

KEYWORDS: Thyroxine, Sciatic nerve injury, Regeneration

INTRODUCTION

Peripheral nerve lesion is a challenging problem, from which patients suffer following extreme trauma. Around 3 percent of all trauma patients are estimated to undergo peripheral nerve injuries and its prevalence rate increases annually (6). The main cause of sensory and motor disability is peripheral nerve damage, which occurs frequently. Severe damage to peripheral nerve leads to impaired ability to move muscles, impaired normal sensation, loss of muscle innervations, and painful neuropathy (16). The peripheral nervous system has inherent ability to self-regenerate after damage. However, in extreme injuries, recovery is almost insufficient and use of agents that promote the regeneration rate is necessary (24). In this regard, one of the major epigenetic factors that control the nervous system regeneration is the thyroid hormone. Previous reports show that in hypothyroidism mice, thyroid hormone deficiency limits the nerve regeneration by decreasing axonal development (1,20). Thyroid hormone deprivation causes a decline in the number of myelin fibers and a delay in the expansion of axon diameter in the peripheral nervous system (22,27). According to Kompakis et al. (13), thyroid hormone was shown to accelerate nerve fiber growth and restore sensory neurons in the individuals with ulnar nerve defects. Previous studies demonstrate that thyroid hormone affects all neurologic activities such as myelination, synaptogenesis, and axogenesis and controls the CNS development (14,28,29). Also, Grandel et al. reported that thyroid hormone promoted recovery in the brain of adult fish by conserving most of
the brain's neural stem cells (10). Thyroid hormone is an essential endocrine signal that is retained in all vertebrates and has regenerative potentials. Furthermore, studies have represented that low levels of thyroid hormone may be useful in the treatment of neurodegenerative disorders (4,9). Although many studies have examined the protective effects of thyroxine on central nervous system disorders, neuroprotective action of thyroxine on peripheral nerve regeneration remains unclear.

There are a few reports concerning the effects of thyroxine on peripheral nerve regeneration; however, there is no information about the effects of thyroxine on sciatic nerve crush model. In this paper, we used nerve crush model because nerve crush injury in rats is a commonly used axonotmetic model (an experimental model, in which injury has the potential to recover completely) to study regeneration after nerve damage. Generally, suture technique and materials could cause nonselective inflammatory responses in a transaction model, which highlights the novelty of the present study. The majority of studies that have considered thyroid hormone recovery capacity have been restricted to central nervous system disorders; thus, this animal research was planned to investigate the potential effects of thyroid hormone on functional improvement following sciatic nerve hurt.

MATERIAL and METHODS

Drugs and Chemicals

Thyroxine was prepared from Merck (Germany) and was injected daily into the animals as a solution in distilled water at doses of 5µg/kg and 10µg/kg. All the injections were given intraperitoneally.

Animals

Forty male Wistar rats, weighing 230–250 g, were employed for this research. The animals were kept in a 12-h light/dark cycle, temperature of 22 ± 2 °C, and humidity of 60 ± 5% with *ad libitum* access to standard rodent food and water. All the experimental protocols were done according to the regulations of Ethics Committee of Ardabil University of Medical Sciences (code: IR.ARUMS.REC.1398.512).

Grouping and Surgical Procedures

Forty male animals were used in four groups (n=10): sham operated group (only performing surgical procedures without nerve crush), negative control group (nerve crushing and treated in traperitoneally with distilled water as a vehicle), and two experimental groups treated every day with thyroxine at doses of 5µg/kg and 10µg/kg. All the injections were given intraperitoneally. The rats were first given a combination of ketamine and xylazine at the end of the tests. The animals were anesthetized with an intraperitoneal injection of ketamine and xylazine at the end of the tests. Afterwards, distal regenerated nerve segments in each group were extracted for histomorphometric examination. Then, tissue segments were fixed in 2.5 % glutaraldehyde and 1 % osmium tetroxide. The samples were then dehydrated in ethanol and embedded in resin; the thin slices (approximately 1 µm) were prepared and stained using toluidine blue for light microscopy analysis. Afterwards, the Image J program was used to calculate morphometric characteristics such as the number of myelinated fibers, myelin sheath thickness, fiber and axon diameters (21).

Gastrocnemius Histological Assessment

In order to identify and study the gastrocnemius muscle atrophy severity, Masson's trichrome staining was used. In brief, the tissue samples were first fixed in formalin (10%) and, then, embedded in paraffin. The sections with 5 µm thick were prepared from the samples by microtome. Then, the prepared slides were evaluated using a light microscope.

Gastrocnemius Muscle Mass Index

As previously mentioned, the weight of the gastrocnemius muscle mass was assessed 8 weeks after the surgery to detect denervation atrophy. The gastrocnemius muscles on both sides were separated and weighed. Then, gastrocnemius...
muscle mass ratio of the surgery side and control side was determined. The gastrocnemius muscle atrophy rate on the operated side was indicated by the muscle mass ratio, with a 100 percent gastrocnemius muscle index (GMI) indicating complete recovery on the operated side.

Statistical Analysis

Statistical analyses were done using SPSS Statistics 16.0 software. To determine the statistical significance, all the data were analyzed using one-way analysis of variance (ANOVA) and Tukey’s post-hoc test. All the data were presented as the mean with standard deviation (SD). The p-value ≤ 0.05 was considered significant statistically.

RESULTS

Examining Motor Function

According to the results of this test, the amount of SFI in healthy rats was (0 to -10), which indicated the normal motor function. Two weeks after sciatic nerve crush, the SFI level was uniformly low in all the experimental groups without any significant difference, showing that the total loss of the motor function. Subsequently, in weeks 4 and 6, the sciatic nerve function index in the thyroxine-treated group (10 μg/kg) increased significantly in comparison with the negative control rats (p<0.05; Figure 1). Also, when comparing the thyroxine-treated group (5 μg/kg) to the negative control group, the improvement rate in the motor function was higher, although not statistically significant. Eight weeks after the injury results, the groups were treated with thyroxine-treated and the negative control group completely improved their motor function (Figure 1).

Sensory Recovery Test

Improvement in the sensory function was assessed using a hot-plate test 2, 4, 6, and 8 weeks after the crush. According to the results, the first symptoms of the sensory function improvement were observed 4 weeks after crush. According to the studies, in weeks 4 and 6 after the surgery, the response to the hot-plate test was faster in the group treated with thyroxine (10 μg/kg) than in the negative control group (p≤0.05; Figure 2). Furthermore, there was no significant difference in heat reaction time between thyroxin-treated (5 μg/kg) and negative control groups (Figure 2).

Histomorphometry Analysis

The results obtained from the morphometric study for each of the experimental groups after staining with toluidine blue are given in Table I. Morphometric results, 8 weeks post-surgery, demonstrated that the fiber number and myelin sheath thickness in the thyroxine-treated group (10 μg/kg) showed a considerable rise when compared to the negative control group (p<0.05; Figure 3A-D). Also, there was no significant difference in the fiber number between the thyroxine-treated (5 μg/kg) and negative control groups. Furthermore, myelin sheath thickness in the thyroxine-treated (5 μg/kg) group was significantly increased in comparison to the negative control group (Table I, Figure 3A-D).

Histological Assessment of Gastrocnemius Muscle

Figure 4 shows the gastrocnemius muscle stained with Mason trichrome in different groups. According to the observed images, it is inferred that the level of the collagen fiber in the

![Figure 1: Functional index of sciatic nerve after surgery. Data are presented as mean ± standard error of mean. P<0.05 *, p<0.01 **, and p<0.001 *** are considered significant compared to the negative control group.](image-url)
Figure 2: Figure indicates the improvement rate of sensory function in the hot-plate test after surgery. Results are shown as mean ± standard error of mean. *p<0.05 * and ***p<0.001 are considered significant compared to the negative group.

Figure 3: Images of semi-thin transverse sections in the distal part of the sciatic nerve 8 weeks after crush. Sham (A), negative control (B), thyroxine 5 μg/kg (C), and thyroxine 10 μg/kg (D).
DISCUSSION

Following severe peripheral nerve damage, lack of sensory and motor function severely affects patients’ lives. As a result, it is critical to accelerate and improve the restoration of injured axons (30). For years, thyroid hormones have played a crucial role for the normal increase in the nervous system in mammalian embryos and infants (6). According to the present study, treatment with thyroxine at doses of 5 and 10 μg/kg for one week increased nerve regeneration. Considering the results of SFI, hot-plate, and morphometric analysis, administering thyroxine increased the number of myelin fibers and thickness of myelin sheath; it also improved sensory and motor functions and, thus, led to nerve regeneration. The current study’s findings were consistent with those of previous research that have demonstrated the induction of hyperthyroidism in rats could increase axon regeneration at trauma sites. Increasing T3 accelerates the longitudinal growth of regenerative peripheral axons. Also, the protective effect of the hormone

<table>
<thead>
<tr>
<th>Groups</th>
<th>Number of fibers</th>
<th>Diameter of fibers</th>
<th>Diameter of axon</th>
<th>Thickness of myelin sheath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham</td>
<td>4978 ± 3.9''</td>
<td>6.05 ± 0.4'''</td>
<td>4.08 ± 0.3'''</td>
<td>1.97 ± 0.2'''</td>
</tr>
<tr>
<td>Negative control</td>
<td>4559 ± 4.7</td>
<td>2.01 ± 0.3</td>
<td>1.47 ± 0.3</td>
<td>0.52 ± 0.08</td>
</tr>
<tr>
<td>Thyroxine 5 μg/kg</td>
<td>4387 ± 11.3'</td>
<td>3.76 ± 0.13'''</td>
<td>2.55 ± 0.11'''</td>
<td>1.21 ± 0.1'''</td>
</tr>
<tr>
<td>Thyroxine 10 μg/kg</td>
<td>9676 ± 28.6'''</td>
<td>4.79 ± 0.47'''</td>
<td>3.53 ± 0.46'''</td>
<td>1.26 ± 0.05'''</td>
</tr>
</tbody>
</table>

Evaluating Gastrocnemius Muscle Mass

Eight weeks after drug treatment with thyroxine, the gastrocnemius muscle in the crushed foot and the healthy foot was separated and weighed. Then, the mean weight ratio of gastrocnemius muscle of the crushed foot to the healthy foot was compared in all the groups. According to the observed results, the operated leg muscle had a different degree of muscle atrophy in all the groups (p≤0.05; Figure 5). In the groups treated with thyroxine, less degrees of muscle atrophy were observed than other groups (p≤0.05; Figure 5).

Figure 4: Gastrocnemius muscle stained with Mason trichrome. Sham (A), negative control (B), thyroxine 5 μg / kg (C), and thyroxine 10 μg / kg (D).
increases in a dose-dependent manner (31). Thyroid hormone carriers across the plasma membrane activate the biological activity of circulating thyroid hormone (3) because both sensory and motor neurons and non-neural cells have T3 receptors (26). T3 has the ability to affect axonal neurons and Schwann cells. Thus, it strengthens several mechanisms for nerve survival and axon regeneration. Neurotrophins, among brain-derived neurotrophic factor (BDNF), neurotrophic factor type 3 (NT3), and nerve growth factor (NGF), are important for neuronal survival and axonal growth. Both BDNF and NT3 are dependent on thyroid hormone, which decreases with thyroid depletion (2). In humans, during the first few days after an adult nervous system injury, BDNF mRNA levels in the CNS and PNS decrease by 50%, indicating that BDNF appears to play a role in neuronal survival. After a traumatic incident, some sensory neurons in the dorsal root ganglion get into an apoptotic process. T3 is thought to have a direct effect on decreasing apoptosis and preserving a large number of sensory neurons (18). By salvage sensory neurons, T3 increases the number of new axons entering the distal portion. One of the most important influences of T3 on peripheral nerve regeneration is the increased myelin sheath formation of new axons. Therefore, treatment with T3 may recover the function of motor and sensory neurons by affecting their maturation and increasing the diameter of the myelin sheath. This efficacy of T3 is possibly a direct stimulant influence on Schwann cells (25). Axotomy can cause peripheral neurons to regrow. Skeletal proteins play a major role in this process since they are involved in axon development, remodeling, growth, transport, and stability. Thyroid hormones (T3) influence the expression of important skeletal proteins involved in regenerating the sciatic nerve (5,15,17,19). In this regard, T3 stimulates SCG10 synthesis which is a regulator of growth cone microtubules (12). The stimulatory effect of T3 on SCG10 expression may furnish a mechanism that improves nerve regeneration. Previous studies have shown that the expression of SCG10 protein in the proximal nerve fragment is significantly enhanced 24 hours after sciatic nerve damage. Because the T3 receptor acts as a ligand-regulated transcription factor, it may also directly activate SCG10 expression (23). In addition, T3 stimulates the assembly of microtubules that are necessary for axon growth (7).

CONCLUSION

The present findings showed that treatment with thyroxine after peripheral nerve injury accelerated nerve repair and improved sensory and motor function. These results can be due to the stimulatory effects of thyroxine on myelin sheath formation. Thyroxine could decrease the apoptosis and protect the Schwann cells which are necessary for nerve regeneration.

AUTHORSHIP CONTRIBUTION

Study conception and design: FM, AA
Data collection: MA
Analysis and interpretation of results: FM, AA, MA, AB
Draft manuscript preparation: FM, AA, MA
Critical revision of the article: FM
Other (study supervision, fundings, materials, etc...): FM, AA

All authors (FM, AA, AB, MA) reviewed the results and approved the final version of the manuscript.

REFERENCES

13. Kormpakis I, Papalois A, Zoubos AB, Sioutis I, Dimitriadi A, Soucacos PN, Johnson EO: Silicone tubes with thyroid hormone (T3) and BDNF as an alternative to autografts for bridging neural defects. Injury 51(12):2879-2886, 2020
28. Vancamp P, Butruille L, Demeneix BA, Remaud S: Thyroid hormone and neural stem cells: Repair potential following brain and spinal cord injury. Front Neurosci 14:875, 2020
29. Vancamp P, Demeneix BA, Remaud S: Monocarboxylate transporter 8 deficiencies: Delayed or permanent hypomyelination? Front Endocrinol 11:283, 2020
30. Vancamp P, Demeneix BA, Remaud S: Monocarboxylate transporter 8 deficiencies: Delayed or permanent hypomyelination? Front Endocrinol 11:283, 2020