Acute Interdural Hematoma Mimicking Epidural Hematoma: A Case Report

Epidural Hematoma Benzeyen Akut İnterdural Hematom: Bir Olgu Sunumu

Humain BAHARVAHDAT2, Hamid ETEMADREZAIE1, Samira ZABIHYAN1, Shervin DASHTI1, Babak GANJEIFAR1

1Masjed-e Soleyman University of Medical Sciences, Department of Neurosurgery, Masjed-e Soleyman, Islamic Republic of Iran
2Fondation Ophtalmologie Adolphe de Rothschild, Interventional Neuroradiology, Paris, France
3University of Louisville School of Medicine, Department of Neurosurgery, Louisville, USA

Correspondence address: Humain BAHARVAHDAT / E-mail: humainbv@yahoo.fr

ABSTRACT

Intracranial hematomas rarely present between two layers of pachimeninges. Here, we present a case of an interdural hematoma with similar appearance to an epidural hematoma. A 51-year-old man presented with a left temporal contusion following a motor vehicle accident. After craniotomy and contusion removal, the post-operative CT scan showed a parietal intracranial hematoma located posterior and superior to the bone flap. The CT scan appearance of the new hematoma was similar to the CT scan appearance of an epidural hematoma. Upon operation, we determined that the hematoma was located between two layers of dura mater, i.e., an interdural hematoma. We removed the hematoma and sutured the two layers of dura to each other at multiple sites. Interdural hematoma is a rare entity. Its appearance in a CT scan can be mistaken for an extradural hematoma.

KEYWORDS: Craniotomy, Epidural hematoma, Interdural hematoma, Intracranial hematoma

ÖZ

ANAHTAR SÖZÇÜKLER: Kraniyotomi, Epidural hematom, Interdural hematom, Intrakraniyal hematom

INTRODUCTION

Intracranial hematomas are a common event following trauma or neurosurgical operation in adulthood, they rarely present between two layers of dura mater. We present a case of interdural hematoma (IDH) that developed after craniotomy together with its clinical features and management.

CASE REPORT

A 51-year-old man presented with loss of consciousness following a motor vehicle accident. Upon admission he had a GCS of 11. The pupils were reactive and symmetric, and the rest of the neurological exam was normal. Computed tomography (CT) scan showed a contusion in the left temporal lobe (Figure 1). A left temporal craniotomy was performed, and the contusion was completely removed. During craniotomy, the posterior branch of the middle meningeal artery was incised to create a dura mater opening. The bleeding from this artery was controlled by bipolar coagulation. Postoperatively, the patient became alert.

Postoperative CT scan showed the total removal of the contusion and a new left parietal intracranial hematoma, which had an appearance similar to that of an epidural hematoma (EDH) (Figure 2) and was misdiagnosed as EDH before surgery. The new hematoma was located superiorly and posteriorly to the temporal bone flap. The patient was operated upon for a second time. A left parietal craniotomy was performed. No hematoma was found in the extradural space. Upon opening the outer layer of dura mater, the hematoma was found to be located between the two layers of the dura mater (Figure 3). The subdural space was free of hematoma. No vascular malformation was found in the dura mater. After evacuation of the hematoma, the two layers of dura mater were sutured to each other at multiple sites. The
post-operative CT scan revealed the complete removal of the hematoma. The patient died 10 days after the second operation, due to aspiration pneumonia.

DISCUSSION

The cerebral dura mater consists of two layers, an inner or meningeal and an outer or periosteal layer (8). These two layers are jointed together except where they are separated to form large dural sinuses. Therefore, the structures in the cavernous sinus and Meckel’s cave are located in interdural space (7). Although interdural tumors or hematomas can sometimes develop in the dural sinuses, as falcian hematoma in the perinatal period or brain tumors (meningiomas) in the cavernous sinus (5, 6), the interdural presentation of blood or tumors in the convexity of brain is challenging and rarely reported (3). Interdural hematoma is a very rare entity in adulthood and we found only three cases of IDH reported in the literature, two in the supratentorial convexity and one in the posterior fossa (1, 2, 4).

Interdural hematoma in the perinatal period may be related to intrauterine asphyxia or mechanical injury and is usually presented in the falcian space (6). However, it is commonly located in the convexity in adulthood and its pathogenesis is not well described. Miyajima and his colleagues did not find coagulopathy, vascular malformation, metastasis, or history of trauma in their patient, and they did not suggest any reason for IDH formation (4). Eom and colleagues also did not describe any cause for development of acute IDH after chronic subdural hematoma evacuation (2). In the last case, the dome of aneurysm positioned against the posterior wall of the cavernous sinus and penetrated the inner dural layer and caused interdural hematoma in the posterior fossa (1). In our patient, the meningeal artery was incised during durotomy to remove the contusion in the first operation. Insufficient coagulation may have led to an opening of the artery between the outer and inner layers of dura. The blood penetration separated the two layers from each other. Arterial pulsation enlarged the collection of blood and formed the IDH. Besides, postoperative inter-epidural hematomas may possibly develop by detachment of the dura mater from the skull following intracranial decompressive procedure or use of pin fixation of the head.
On CT scan, the appearance of IDH is similar to the appearance of EDH. IDH could therefore easily be misdiagnosed as EDH, which should be considered during craniotomy when extradural findings do not explain hematoma in the CT scan, and interdural exploration of the hematoma is mandatory. In the previous reports of IDH, MRI revealed the location of the hematoma between the outer and inner layers of dura (1, 4). Its MRI appearance was similar to that of a “Chinese dumpling” (4).

Miyajima and his colleagues removed the involved dural pouch, as well as the hematoma, to treat the IDH. In the present case, removing the hematoma and suturing the two layers of the involved dura to each other at multiple sites were sufficient to prevent the recurrence of hematoma.

CONCLUSION

IDH is a rare entity in adulthood and commonly presents in the convexity of brain. It can originate in branches of meningeal vessels, such as the middle meningeal artery. Preoperative CT scan is not sufficient for precise diagnosis due to the similarity in appearance of IDH and EDH. MRI findings provide a correct diagnosis. Removing the hematoma and suturing the dura layers to each other is sufficient to manage the condition.

ACKNOWLEDGEMENT

We thank Mr. Zakeri for preparing the images.

REFERENCES