Transoral Protrusion of a Peritoneal Catheter Due to Gastric Perforation 10 Years after a Ventriculoperitoneal Shunting: Case Report and Review of the Literature

INTRODUCTION

VP shunting procedure is widely performed in the standard surgical management of hydrocephalus. Pseudotumor cerebri (PTC) is a syndrome including chronically elevated intracranial pressure with absence of a hydrocephalus, mass lesion or other related diseases and with normal cerebrospinal fluid (CSF) composition. PTC is frequently a self-limited entity. Most cases benefit from conservative treatment. The primary goal in treatment of symptomatic PTC is the alleviation of symptoms, and the prevention of visual field loss and blindness. When medical therapy fails or progressive visual dysfunction occurs, surgical approaches for PTC should be considered. Basic surgical procedures include optic nerve sheath fenestration and CSF shunting procedures (lumboperitoneal shunting or VP shunting).

Several complications have been described for VP shunting which is performed for hydrocephalus and some essential pseudotumor cerebri cases. The most common complications include shunt migration, infection, malfunction due to occlusion, disconnection, equipment failure and subdural hematoma (7, 29, 31). Various abdominal complications have been reported ranging from 10% to 30% by several authors (6, 17, 23). However the migration of peritoneal catheter into numerous organs was reported, only 8 cases with transoral protrusions due to gastrointestinal organ perforation were reported in current literature. We present a rare case of...
transoral protrusion of a peritoneal catheter 10 years after ventriculo-peritoneal shunting procedure and review of the literature through this report.

CASE REPORT

A 47-year-old female had been diagnosed as pseudotumor cerebri who has presented with headache and progressive visual loss 10 years ago. A lumboperitoneal shunting was performed for drug-resistant course in our clinic. During early follow up period, her lumboperitoneal shunt was extracted due to displacement into abdomen and was replaced with a VP shunt. Patient remained stable and asymptomatic for following 10 years. Then she presented with a recurrent headache episode which was set within one month and the peritoneal catheter was self-exposed in her mouth while retching. Systemic and neurological examination showed no abnormalities. Biochemical and microbiological examination of CSF collected by lumbar puncture was within normal ranges. Computed brain tomography (CT) revealed optimally positioned ventricular catheter tip inside narrow right lateral ventricle. But the endoscopic examination showed a catheter inside stomach passing throughout the anterior surface (Figure 1). After the ventricular catheter and dome had excised, a midline supra-umbilical approach was performed. Exploration revealed that peritoneal catheter has been encircled with omentum in anterior portion of stomach which had perforated and entered into corpus of stomach at the anterior surface (Figure 2). Because the catheter was adherent to the stomach, it was excised with surrounding stomach tissue and the defect on stomach was sutured primarily. Culture of extracted shunt material showed no microbial activity (Figure 3). Neither clinical deterioration due

![Figure 1: Endoscopic view of peritoneal catheter entering stomach via anterior wall (arrows).](image)

![Figure 2: Surgical explorative view of peritoneal catheter perforating stomach.](image)

![Figure 3: Extracted VP shunt system (dome and peritoneal catheter).](image)
to recurrent PTC was detected in post-operative follow-ups and nor re-shunting was needed.

DISCUSSION

High rates of various complications following VP shunting have been reported with an overall incidence of 24% to 47% (8, 23). Abdominal complications constitute up to 10% to 30% as well (6, 17, 23). Abdominal complications include acute abdomen (26, 31), perforation of various abdominal viscera (e.g. colon (17, 21, 28), stomach (2, 19, 21), and urinary bladder (21)), peritoneal pseudocyst formation (6), intestinal volvulus (3), inguinal hernia (13) and migration of the distal tip of peritoneal catheter towards different variety of sites (5, 10, 14, 16, 22). Less frequently, the peritoneal catheter may also extrude throughout vagina (24), anus (1) or mouth (4, 9, 11, 12, 15, 20, 23, 29), scrotal skin (25), and gastrostomy wound (7).

Wilson and Bertrand were the first authors who reported a case of bowel perforation (BP) caused by a distal shunt catheter (32). Intestinal perforation is a serious complication due to VP shunting which is reported with an incidence of 0.01 - 0.07% in the literature. Mortality due to BP is reported approximately 15% in VP shunted patients (4, 18, 27).

Various opinions were expressed for preventing gastric and intestinal perforation. Although sharp peritoneal tip or coiled spring type catheters were found to be responsible for perforation, the silicone catheters like in our case might be one of the potential causes of perforation. This situation is mostly seen in young patients. The reported reasons in children are related with weak intestinal wall and stronger intestinal peristalsis compared with elder patients (19, 23). Christoph et al. reported that previous operations might be relative with this complication (8). Another viewpoint regarding perforation process is the catheter adhesion to the serosal surface of the bowel theory via foreign body reaction which serves a constant point for repeated pressure. This mechanism results with an ulcer formation gradually on the intestinal wall, eventually leading to perforation (23).

Only eight cases with transoral protrusion were reported in literature. Sridhar et al. have reviewed these cases in literature and built in a table (Table I). A female dominance is apparent (7/1). Our case is an adult unlike previous pediatric transoral protrusion cases. Although none of previous cases have shunt revision history, migrated lumbo-peritoneal shunt was extracted and replaced with a VP shunt 10 years ago in our case. In 3 cases, infectious findings were found on catheter line and microbiological CSF examination revealed microbial origin in 2 cases. The period between VP shunting and occurrence of protrusion was ranging between 3 to 48 months. In our case, the period between shunting and protrusion was as long as 10 years. However most of transoral protrusion cases were caused by gastric perforation, tracheal and jejunal perforations were also reported.

The minority of patients may remain symptom-free despite a gastrointestinal perforation due to shunt migration (18, 21, 27). Although most of patients have complaints of abdominal disturbances before perforation, CT or endoscopy may show no abnormalities in this period. If complaints persist, those evaluations should be repeated. In addition to these points, recurrent meningitis, ventriculitis and indemonstrable fever should be considered as BP. Especially colon perforation accompanies with gram-negative infections. CNS infection which is very important for morbidity and mortality should be excluded if one presents with colon perforation. Empiric antibiotic therapy should be administrated following sufficient CSF sample collection. The shunt must be externed. Peritoneal catheter can easily be removed without laparotomy except in cases with peritonitis or peritoneal abscess (4, 30). Effective antibiotics should be administrated after detection of responsible microorganism and shunting procedure should be repeated following infection expelling.

CONCLUSION

Transoral protrusion of peritoneal catheter is a very rare presentation of shunt migration. Our report showed that this

| Table I: Summary of Previously Reviewed Cases (Transoral Protrusion of VP shunt) |
|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|------------------|
| **Age (years)** | **Sex (M/F)** | **GI sx1** | **Previos shunt revision** | **Shunt tract infection** | **Time from VPS (months)** | **Site of perforation** | **CSF infection** |
| Griffith et al. | 9.5 F | No | No | No | 3 | Stomach | Yes |
| Park et al. | 5 F | No | No | Yes | 48 | Stomach | No |
| Fermin et al. | 1.5 F | No | No | No | 6 | Trachea | No |
| Odeboe | 1.5 F | No | No | Yes | 6 | Jejunum | No |
| Jimenez et al. | 11 F | Yes | No | Yes | NA1 | Stomach | No |
| Sridhar et al. | 0.8 F | No | No | No | 6 | Stomach | Jejunum |
| Berhouma et al. | 2 M | No | No | No | 15 | NA | Yes |
| Danismend et al.| 1.5 F | No | No | No | 10 | Stomach | No |
| Present case | 47 F | Yes | No | No | 120 | Stomach | No |

1GI Sx: previous history of gastrointestinal surgery. 2NA: not available.
complication may also occur in adult patients and may be delayed as long as a decade following VP shunt procedure. One must keep in mind that the detailed physical examination and radiological evaluation of shunt device should be performed in previously shunted patients who presented with recurrent symptoms.

REFERENCES

