Lumbar Intradural Paragangliomas: Report of Two Cases

Mehmet SIMSEK¹, Mehmet Resid ONEN¹, Fatima Gursoy ZERENLER₂, Gozde KIR₂, Sait NADERI¹

¹Umraniye Teaching and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
²Umraniye Teaching and Research Hospital, Department of Pathology, Istanbul, Turkey

Corresponding Author: Mehmet Resid ONEN / E-mail: mresid@gmail.com

ABSTRACT

Paraganglioma (PG) is a rare tumor of the dispersed neuroendocrine system. PG derives from the embryonic sympathetic and parasympathetic nervous system. Paraganglioma is a neoplasm of the dispersed neuroendocrine system that affects a variety of anatomic sites, mainly the head and neck. It occurs commonly in the carotid body, glomus jugulare, mediastinum and retroperitoneum. Primary spinal paragangliomas are quite rare tumors. They are commonly located in the cauda equina region, and manifest their own clinical and radiological features. In this study, two cases of lumbar intradural paragangliomas are presented. Both of the tumors were totally resected with surgery and there was no evidence of recurrence or metastases during follow-up period. It was concluded that paragangliomas should be taken into consideration during the preoperative workup studies of lumbar intradural tumors.

KEYWORDS: Lumbar paragangliomas, Cauda equina, Paraganglioma, Spinal tumor

INTRODUCTION

Paragangliomas (PGs) are neuroendocrine system tumors affecting many locations, particularly the head and neck. They occur commonly in the carotid body, glomus jugulare, mediastinum and retroperitoneum (10). PGs derive from the embryonic sympathetic and parasympathetic nervous system (13,15,20,28). PGs of the central nervous system have been reported in a few case series, particularly in the cauda equina (24) and spinal nerve roots (13,15). PGs were reported for the first time by Miller and Torack in 1970 and called secretory ependymomas (15). In 1972 Lerman et al. reported a similar case and named it paraganglioma (13). Spinal paragangliomas comprise 3–4% of all spinal tumors, and about 200 cases of cauda equina PG have been reported in the literature (1, 5, 29, 30).

PGs clinically present with pain of axial or radicular origin, and neurological deficits. Since cauda equina and conus medullaris are the common sites for these tumors, they may cause cauda and conus medullaris symptomatology. PGs may rarely cause uncommon symptoms, such as subarachnoid haemorrhage (3), hydrocephalus (22), and hypertension due to overproduction of catecholamines.

These tumors are often mistaken preoperatively for ependymomas or schwannomas (2). Magnetic resonance imaging (MRI) is currently the best modality demonstrating details of cauda equina PGs (1, 2, 26, 29). As in other cauda equina and conus medullaris tumors, surgery is the treatment of choice. Because PGs are WHO grade I neoplasms and the prognosis is excellent when totally resected, total tumor removal should be aimed (24).

The aim of this study is to report two cases of spinal PGs, and to address the clinical, radiological, and pathological aspects.

CASE REPORTS

Case 1

A 36-year-old male was admitted to our department. He complained of progressive right-sided leg and back pain for six months. There was no neurological deficit. MRI of the lumbosacral spine showed a well-defined intradural tumor at the level of L2 measuring about 1.7 cm in size. The tumor
Simsek M. et al: Lumbar Intradural Paragangliomas

Figure 1: A, B) Sagittal T1 and T2-weighted lumbosacral images showing well-circumscribed tumor at the level of L2. C, D) The tumor showed diffuse contrast enhancement after injection of Gadolinium.

The tumor was resected totally using microtechnique. Postoperative MRI confirmed total excision of the tumor (Figure 6A-D). The patient was neurologically intact on follow-up 6 months after surgery.

Pathological Findings of Case 2

Grossly the tumor was red-brown, circumscribed, encapsulated 2.5x0.7x1.2 cm in size. In some areas, tumor resembled papillary ependymoma, particularly because of the perivascular pseudopapillary pattern superficially. In other areas, the tumor was well differentiated, composed of nests (Zellballen), surrounded by a delicate capillary network. The uniform round tumor cells with round nuclei and generally clear cytoplasm were diffusely positive for synaptophysin and chromogranin but not for GFAP (Figure 7A,B). All these findings supported a diagnosis of PG.

DISCUSSION

Approximately 90% of PGs arise in the adrenal gland (phaeochromocytoma), and 90% of extra-adrenal PGs occur in the carotid body and jugular bulb (31). Almost 200 cases of spinal PGs have been reported so far (1,5,29). The majority of these cases were reported to be located in the intradural space. The vast majority of these tumors are intradural, and found within the cauda equina. However, PGs may be found on either side of the dura. Most extradural spinal PGs are metastatic (11,12,18,19), and are located commonly in the thoracic spine. However, there are some primary spinal extradural PG cases (7,8). Both cases reported here were located in the cauda equina. They form almost 1.8% of all 106 spinal tumors, and 4.6% of 43 lumbosacral tumors operated at our institution in the last four years.

The severity of the symptoms and findings of these tumors depends on the location and the size of the tumor. Pain and neurological deficit are the main symptoms. However, PGs may rarely cause uncommon problems, such as subarachnoid haemorrhage (3), hydrocephalus (22), and hypertension and
palpitation due to overproduction of catecholamines, which were not evident in our cases.

It is important to consider paraganglioma during preoperative workup of intradural tumors in the cauda equina region. Firstly, paragangliomas may affect endocrine and cardiovascular function via overproduction of catecholamine (1,15,16,21,29). This requires surgeons to be careful to avoid surgical manipulation-related hypertension crisis during surgery. Secondly, paragangliomas are hypervascular tumors (4). However, presurgical radiological diagnosis of PGs is not easy. MRI may reveal serpentine and congested vessels and a hypointense rim (“cap sign”) on T2-weighted images. Cauda equina PGs have no specific MR features. They are seen as hypo- or isointense tumors on T1- and hyperintense on T2-weighted MR images, showing diffuse contrast enhancement. Herman et al. (6) described MR characteristics of spinal PGs and reported that MRI fails in distinguishing of PGs from other tumors. This is because ependymomas have similar MRI findings to PGs.

Figure 2: The appearance of tumor of the case 1.

Figure 3: Postoperative precontrast T1 and T2 sagittal images (A, B), and post-contrast sagittal and axial images (C, D) confirming total resection of the tumor.

Figure 4: Histological features of case 1. A) Typical Zellballen architecture H&E (x10). B) Diffuse staining for Synaptophysin (x40).
Figure 5: A,B) Sagittal T1 and T2-weighted lumbosacral images showing well-circumscribed tumor at the level of L3-4. C,D) The tumor showed contrast enhancement after injection of Gadolinium.

Figure 6: A,B) Postoperative pre T1 and T2 sagittal images, and C,D) post-contrast sagittal and axial images confirming total resection of the tumor.

Figure 7: Histological features of Case 2. A) Typical Zellballen architecture H&E (x10). B) Diffuse staining for Synaptophysin (x10).
It is of note that preoperative knowledge regarding the vascularity of these tumors, particularly in cases containing serpentine and congested vessels, is important. A careful evaluation of preoperative MRI is essential to differentiate arteriovenous malformations and hypervascular tumors such as paraganglioma, haemangioma or haemangioblastoma (4). The hypervascular nature of tumors may also require preoperative angiography to exclude AVM and to see vascular architecture of the tumor. Kwan et al. reported preoperative tumor embolization to reduce intraoperative bleeding (9).

A hypointense capsule on T2W images, proton density and gradient echo sequences may also be seen due to hemosiderin or ferritin from haemorrhage. This may also suggest PG in the preoperative stage.

Unfortunately we misdiagnosed PGs as ependymoma in our cases and therefore we did not use any other blood or radiological investigation during our preoperative workup. Nevertheless, the tumors were resected totally in both cases.

PGs are well-differentiated tumors composed of Zellballen containing eosinophilic and granular cytoplasm. Histopathological similarities between PGs and ependymomas may causes diagnostic confusion (14)

Immunohistochemistry studies show reactivity for markers of neural differentiation, including synaptophysin, neuron specific enolase, and chromogranin with lack of reactivity for GFAP in most cases. This is a helpful feature for the differential diagnosis of ependymoma, meningioma and schwannoma (23). Both pathological features and immunohistochemical aspects of our both cases supported a diagnosis of PG.

The recommended treatment for spinal PG is total resection. Surgery commonly reveals a well-circumscribed, ovoid to cylindrical intradural, extramedullary tumor, with a maximum dimension of a few centimeters. Complete surgical resection is possible in most cases. When total tumor resection is not possible, radiation treatment is recommended (8, 27). Total removal of the entire tumor was achieved in our both cases and no radiation therapy was performed.

In conclusion, cauda equina paragangliomas are rare and benign tumors. Their functional and vascular aspects should be taken into consideration before and during surgery. This requires careful preoperative clinical and radiological evaluation. Optimal treatment includes surgical resection when feasible. In case of subtotal tumor removal, radiation and chemotherapy are other treatment modalities.

REFERENCES