The Effect of Ozone Therapy on Experimental Vasospasm in the Rat Femoral Artery

Metin ORAKDOGEN¹, Serap USLU², Selin TURAL EMON¹, Hakan SOMAY¹, Zeynep CİNGU MERİC³, Tayfun HAKAN⁴

¹Haydarpasa Numune Teaching and Research Hospital, Department of Neurosurgery, Istanbul, Turkey
²Acibadem University, Vocational School of Health Services, Department of Histology and Embryology, Istanbul, Turkey
³Atasehir Ozone Center, Istanbul, Turkey
⁴Private Practice, Neurosurgeon, Istanbul, Turkey

ABSTRACT

AIM: Oxidation products following subarachnoid hemorrhage (SAH) are among the causative substances of cerebral vasospasm and poor outcome. Ozone (O₃) is a gas that contains three atoms of oxygen with a cyclic structure. It has been suggested that application of low-dose ozone has an antioxidant effect and provides resistance to oxidative stress. We investigated the effect of oxygen-ozone therapy on rat femoral artery vasospasm.

MATERIAL and METHODS: Twenty-four male Sprague-Dawley rats were randomly separated into vasospasm, vasospasm + ozone and control groups. The femoral artery vasospasm model was used. Rats in the vasospasm + ozone group were given 4 mL of ozone (20 µL/mL) daily for 7 days. Femoral arteries were examined by light microscopy for histological changes and morphometric analysis. Kruskal Wallis test and Mann Whitney U tests were used for the statistical analysis. The values of p<0.01 and p<0.05 were recognized as statistically significant.

RESULTS: Ozone treatment reduced the morphometric changes as irregularity of the elastic lamina, disruption of the endothelial cells, vacuolization and hemorrhages that caused by vasospasm. The measurements of the wall thickness (p=0.003; p<0.01) and lumen diameter (p=0.001; p<0.01) showed statistically significant difference (p < 0.01) between the vasospasm and vasospasm+ozone groups.

CONCLUSION: Ozone therapy may be useful in the treatment of post-hemorrhagic vasospasm.

KEYWORDS: Cerebral vasospasm, Ozone, Ozone therapy, Rat femoral artery, Subarachnoid hemorrhage, Vasospasm
We report an experimental study to investigate the effect of oxygen-ozone therapy on rat femoral artery vasospasm.

MATERIAL and METHODS

The experimental protocol was approved by the Animal Care and Use Committee at Marmara University, School of Medicine. Twenty-four male Sprague-Dawley rats weighing approximately 250-300 g were housed with one animal per cage at the animal the Experimental Animal Implementation and Research Center (DEHAMER) of Marmara University.

Rats were separated randomly into three experimental groups, with eight rats in each: control, vasospasm, and vasospasm + ozone groups. The animals were anaesthetized by an intraperitoneal injection of ketamine (100 mg/kg) and allowed spontaneous breathing. The femoral artery vasospasm model described by Okada et al. (23) was used. A 10-mm segment of both femoral arteries were exposed by using a microsurgical technique in the inguinal region, 0.1 mL of fresh autologous whole blood derived from ventral tail artery was applied directly to the femoral artery and covered with a cylindrical silastic cuff. In vasospasm group each rat received a daily 4 mL of medical air that was insufflated rectally during 1 minute via an 18G cannula for 7 days. Rats in the vasospasm+ozone group each rat received a daily 4 mL of ozone (20 µL/mL) (Medozon compact, Herrmann Apparatebau GmbH, Germany) that was insufflated for 7 days. At the end of the 7 days all animals were anaesthetized as previously described and sacrificed. Femoral arteries were dissected and fixed in 10% formalin solution for 24 hours before tissue processing. Following paraffin embedding, tissue sections of 5-µm were stained with hematoxylin-eosin (H&E) for histomorphometric analyses and elastic Van Gieson (EVG) for evaluated internal elastic lamina. Histomorphometry was performed after the images were transferred from a light microscope (Zeiss Axio VertA1) via camera (AxioCamICc 5 camera) into a computer. Lumen diameter and wall thickness of femoral arteries were measured by a semi-automatic digitizer The University of Texas Health Science Center At Santorini (UTHSCSA Image Tool for Windows Version 1.28). The samples from the femoral arteries were measured in 4 different points.

NCSS (Number Cruncher Statistical System) 2007 and PASS (Power Analysis and Sample Size) 2008 Statistical Software (Utah, USA) programs with the Kruskal-Wallis and Mann-Whitney U tests were used for the statistical analysis. The values of p<0.01 and p<0.05 were recognized as statistically significant.

RESULTS

Histological Changes

Thin and smooth endothelium, unfolded internal elastic lamina and concentric smooth muscle cells were found and the lumen was clearly observed in control group (Figure 1A, B).

In the vasospasm alone group, disruption and proliferation of the endothelial cells into the lumen were observed. The internal elastic lamina was irregular. Vacuolization and hemorrhages into the tunica media were identified and concentric smooth muscle cells were seen to be irregular (Figure 2A, B).

The ozone group’s endothelial cells had less disruption than the vasospasm group. Normal internal elastic lamina was shown. There was no hemorrhage or vacuolization in the tunica media (Figure 3A, B).

![Figure 1: Control group: Uniform and regular endothelium, A) H&E, 200x B) EVG, 200x.](image-url)
Morphometric Analysis

We compared the wall thickness and lumen diameters in all groups and summarized them as mean and standard deviation (Table I). The mean wall thickness was found to be 300.90±40.17, 384.41±49.13 and 289.23±65.98 in the control, vasospasm and vasospasm+ozone groups respectively (Figure 4). The difference between the groups was statistically significant (p=0.003; p<0.01). According to pair-wise comparison, the mean wall thickness of the vasospasm group was significantly more than the control and vasospasm+ozone groups (p=0.009; p=0.002; p<0.01). There was no significant difference between mean wall thickness of control and vasospasm+ozone groups (p=0.600; p>0.05).

The mean lumen diameter was 377.51±91.73, 106.79±9.69 and 182.59±58.48 in the control, vasospasm and vasospasm+ozone groups respectively (Figure 5). The difference between the groups was statically significant (p=0.001; p<0.01). According to pair-wise comparison, the mean lumen diameter of the vasospasm group was significantly lower than the control and vasospasm+ozone groups (p=0.006; p=0.001; p<0.01).

![Figure 2: Vasospasm group: increased wall thickness and degenerated endothelium, A) H&E, 200x, B) EVG, 200x.](image1)

![Figure 3: Ozone group: endothelium nearly regular and uniform, A) H&E, 200x, B) EVG, 200x.](image2)
The mean lumen diameter was also statistically significantly lower in the vasospasm ozone group than the control group (p=0.001; p<0.01).

DISCUSSION

Despite the enormous advances in neuroscience, there is no definitive treatment of cerebral vasospasm following SAH. Many pathological pathways are suggested to be responsible for the post hemorrhagic vasospasm that can cause morbidity and mortality (14,28). It has been well demonstrated that reactive oxygen species play a key role in the pathophysiology of cerebral vasospasm and subsequent cerebral ischemia (21,24). Free radical-mediated injuries (11,28) and inflammation (1,14) are among the important theories for the pathogenesis of vasospasm. Ozone, a gas composed of three atoms, is the third most potent oxidant after fluorine and persulfate (5). Ozone has been used medically for its strong effects on inflammation and oxidation (2,3).

It was reported that controlled ozone administration promotes an oxidative preconditioning or adaptation to oxidative stress (9). Age-related macular degeneration, ischemic and infectious diseases and wound healing disorders are among the diseases where ozone therapy has proven its benefit (4). It has been shown that ozone preconditioning protects against the cellular damage by free radicals (18). In an animal study, Frosini et al. (10) reported that O3 in selective concentrations may have a role in inducing ischemic damage in brain tissue after a stroke. El-Sawalhi et al. (9) reported that ozone administration by rectal insufflations reduced lipid and protein oxidation in the hippocampus and heart tissues and normalized the glutathione peroxidase activity in heart tissue.

Souza et al. (27) found that ozone therapy has possible benefit in attenuating the inflammatory response. Chen et al. (7) showed that ozone oxidative preconditioning inhibited
inflammation and apoptosis in a rat model of renal ischemia/reperfusion injury. Wang et al. (30) pointed out that ozone may exert its protective effects by a mechanism involving modulation of the transforming growth factor-β1/Smad7 pathway in their study investigating ozone therapy and renal fibrosis.

While ozone has side effects and can irritate the respiratory system in humans and animals, the use of ozone has mostly been experimental (27). Ozone contact with the eyes and lungs should be avoided as these organs are very sensitive to ozone and have minimal antioxidant and neutralizing capabilities (5). Inhalation of ozone may cause acute arterial vasoconstriction in humans (6). O₃ has two roles: it can cause oxidative damage and have minimal antioxidant and neutralizing capabilities (5). The results of this study indicate a promising therapeutic effect of ozone. This effect may be a result of the addition of antioxidant and anti-inflammatory features of the ozone molecule mentioned above.

CONCLUSION

The results of this study indicate a promising therapeutic effect of ozone. This effect may be a result of the addition of antioxidant and anti-inflammatory features of the ozone molecule mentioned above.

REFERENCES

