ABSTRACT

AIM: Neurogenic pulmonary edema (NPE) is the most serious complication of subarachnoid hemorrhage (SAH). As vagal nerves have vital roles in lung functions, vagal ischemia may have a causative role in the pathogenesis of NPE. We examined whether there was a relationship between vagal complex ischemia and lung immune complexes occupying the lymph node infarct in SAH.

MATERIAL and METHODS: Thirty-two rabbits were divided into three groups: Control (n=5), SHAM (n=5) and SAH group (n=22). SAH was created by autologous blood injection into the cisterna magna and followed-up for 3 weeks. Vasospasm index (VSI) was defined as the ratio of the lung lymph node arteries (LLNA) wall section (wall ring) surface to the lumen surface. Degenerated axon numbers of vagal nerves, neuron densities of the nodose ganglion (NG) and VSIs of LLNA were compared for all groups.

RESULTS: The mean degenerated vagal nerve axon density, neuron density of NG, and VSI of LLNA were 26±8/mm², 30±5/mm³, and 0.777±0.048 in the control group; 1300±100/mm², 720±90/mm³, and 1.148±0.090 in the animals with slight vasospasm (n=12); and 7300±530/mm², 5610±810/mm³, and 1.500±0.120 in the animals with severe vasospasm (n=10), respectively.

CONCLUSION: Degenerated vagal axon and NG neuron density may be a causative factor in the development of LLNA vasospasm induced lymph node infarct in SAH. Lung lymph node infarct may be an important factor in the prognosis of NPE.

KEYWORDS: Subarachnoid hemorrhage, Vagal nerve, Lung lymph node infarct, Neurogenic pulmonary edema

INTRODUCTION

The lymph nodes are the most important integral part of the lung’s immune system when coping with foreign bodies, metabolites and dangerous compounds. The pulmonary lymphatic system is involved in immune homeostasis and surveillance (14). Cholinergic pathways are localized in the lung lymphoid tissues, which play an important role in the modulation of neuronal metabolism and immunity in the lungs (9). The lungs are innervated by vagal, cervical sympathetic, and thoracic somatic nerves that are primarily responsible for the continuation of respiration reflexes (11). Sensory innervation of the respiratory tract is regulated primarily at the level of the nodose ganglion (NG) and pulmonary microganglia of the vagal nerves (34), glossopharyngeal nerves (GPN), and cervicothoracic spinal ganglia (32).

The respiratory and immunoregulatory roles of vagal nerve on the lungs (18) may be damaged (37) due to vagal nerve injury in subarachnoid hemorrhage SAH (6) and pulmonolymphatic vessel innervation deficiency resulting in lung immune defects (31). Hypoxia induces pulmonary vasoconstriction (32) and immune deficiency in the lungs (8). At the beginning of SAH, ischemic neurons of the vagal nerves generate uncontrollable parasympathetic discharges leading to lung edema associated with dilated lung lymph node arteries (LLNA) and increased vagal cholinergic activity, and consequently to cardiorespiratory hypertension (5,10). Neurogenic pulmo-
nary edema (NPE) in severe SAH is observed due to lacking parasympathetic stimulation of the lungs caused by uncontrollable LLNA vasospasm and lymphatic tissue infarct (21). Vagotomy blocks brain mediated fever and inflammation (19). Ischemic vagal injuries trigger pulmonary inflammation and infections. Alterations in NG following SAH have not been studied in the pathogenesis of lung lymph node infarct. This experiment was carried out to determine correlation and infections. Alterations in NG following SAH have not been studied in the pathogenesis of lung lymph node infarct.

The mean numerical density of normal and degenerated neurons in the nodose ganglia (Nv/Gv) per cubic millimeter was estimated using the following formula:

\[N_{v/Gv} = \frac{\sum Q - \sum A x d}{VSI} \]

where \(\sum Q \) is the total number of counted neurons appearing only in the reference sections, \(d \) is the section thickness, and \(A \) is the area of the counting frame. The most effective way of estimating \(\sum A \) for the set of dissectors is using \(\sum A = \sum Pa \), where \(\sum P \) is the total number of counting set frame points and \(a \) is a constant area associated with the set point (12). The total number of neurons was calculated by multiplying the volume (\(\text{mm}^3 \)) and the numerical density of neurons in each NG. The number of neurons in NG was counted for each animal (Table I).

The LLNAs were harvested from the longitudinal sections at the lymph node hilus level. To calculate vasospasm index (VSI), the surface of the LLNA was determined using cylindrical geometry. The LLNAs were cut 20 segments away from the arising point of the main LLNA to the entering points of lymph nodes. Then, 20 subsequent histopathological sections with 5 \(\mu \text{m} \) intervals were cut (indicated by line a to u) to achieve representatively the mean external diameter and internal (luminal) diameters, external radius (\(R_e \)), and internal radius (\(r_i \)) (Figure 3A, B). The wall ring surface (\(S_r \)) was calculated using the following formula as follows:

\[S_r = \pi (R_e^2 - r_i^2) \]

The lumen surface (\(S_l \)) was calculated in similar algorithm, which was equal to \(\pi r_i^2 \). The VSI is the ratio of the \(S_r \) to \(S_l \). That is, it is equal to \(\frac{\pi (R_e^2 - r_i^2)}{\pi r_i^2} \), to \(\frac{(R_e^2 - r_i^2)}{r_i^2} \) when simplified.

Data Analysis

Degenerated axon numbers of vagal nerves, neuron densities of NG, and VSI of the LLNA were compared using the Kruskal-Wallis and Mann-Whitney U tests (SPSS® for Windows v. 12.0, Chicago, IL). Differences were considered to be significant at \(p<0.005 \).

RESULTS

Meningeal irritation signs, consciousness, convulsive attacks, and look-up sections were reversed in order to double the number of dissector pairs without cutting new sections. The mean number of neuron density of nodose ganglia (Nv GN) per \(\text{mm}^3 \) was estimated using the following formula as follows:

\[N_{v/Gv} = \frac{\sum Q - \sum A x d}{VSI} \]

\[\text{VSI} = 0.777 \pm 0.048 \]

\[1.148 \pm 0.090 \]

\[1.500 \pm 0.120 \]

Table I: The Relationship Between the Degenerated Vagal Axon and Neuron Density and the Values of Pulmonary Artery Vasospasm Indices (VSI) are Summarised

<table>
<thead>
<tr>
<th>Measurements</th>
<th>Normal</th>
<th>Slight</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degenerated axon density (per (\text{mm}^3))</td>
<td>26±8</td>
<td>1300±100</td>
<td>7300±530</td>
</tr>
<tr>
<td>Degenerated ganglion density (neuron/(\text{mm}^3))</td>
<td>30±5</td>
<td>720±90</td>
<td>5610±810</td>
</tr>
<tr>
<td>VSI</td>
<td>0.777±0.048</td>
<td>1.148±0.090</td>
<td>1.500±0.120</td>
</tr>
</tbody>
</table>
fever, apnea, cardiac arrhythmia, and breathing difficulty were the typical clinical findings in premortal periods. Cardiac pulse, breath pulse, blood oxygen concentration were 250±30 per minute, 30±7 per minute, and 95±5% for normal animals and 140±40 per minute, 15±5 per minute, and 70±10% for animals affected by SAH at the beginning stage. There were remarkable electrocardiographic changes, including ST depression, ventricular extra-systoles, bigeminal pulses, QRS separation, and fibrillations. However, at the late phase of SAH, heart pulse increased to 330±30 per minute. The respiration rate was 20±4 bpm at the beginning, and 10 hours later, it increased to 40±9 bpm with severe tachypneic and apneic characteristics. The respiration frequency decreased to 15±5 per min (bradypnea) and respiration amplitude increased by 30% at the first hours of SAH. However, at the later stage, the respiration frequency increased (tachypnea), respiration amplitude decreased (30±8%), inspiration shortened, and expiration time was prolonged, which were accompanied by apnea-tachypnea attacks, diaphragmatic breath, and respiratory arrest.

Figure 1 illustrates gross anatomopathological appearance of the brain of a dead animal affected by SAH as well as ischemic neurodegeneration in NG with normal neurons (NN) and degenerated neurons (DN) upon SAH induction. Axonal and periaxonal slimming, axonal loss, and expanded interaxonal space were considered signs of axonal degeneration in histopathological examination of vagal nerves. These changes of vagal nerves were less severe in living animals affected by SAH (Figure 2A, B). Histological appearance of a normal lung tissue, lymph node (LN), bronchioles (Br), and pulmonary artery (PA) as well as LLNA in lymph node and VSI estimating method are shown in Figure 3A, B. NG degeneration is shown in Figure 4A. The inner elastic membrane (IEM) was less convoluted and the luminal surface area was greater in the control and light vasospastic SAH groups. Moreover, narrowed LLNAs, convoluted IEM, edema in intima, shrunk endothelial cell shrinkage, and desquamation and endothelial cells loss were evident in the SAH groups (Figure 4B). Histological appearance of inflamed and degenerated mega lymph node of a lung with lymphatic infarct, hemorrhagic infiltrations in lymph node was associated with severe vagal degeneration, increased lymph node volume, blood collection in lymph node, and ruptured lymph nodes into bronchioles indicated lymphatic infarct is shown in Figure 4/A. Severe hemorrhagic-neurogenic lung edema, lymph node degeneration (Blue stars/Figure 5/A), severe inflamed and spastic LLNA (Figure 5A) and endothelial shrinkage, desquamation and intimal proliferation are seen (Figure 5B). In Figure 6/base, apoptotic lung tissues, spastic degenerated LLNA (Figure 6A) and degenerated lymphatic vessels are seen (Figure 6B).
The mean VSI of LLNA, normal vagal nerve axon density, and neuron density of NG for the rabbit family was 0.777±0.048, 29700±8500 per mm², and NG10.230±1.010 per mm³, respectively. The mean degenerated vagal nerve axon density, degenerated neuron density of NG, and VSI of LLNA were 26±8/mm², 30±5/mm³, and 0.777±0.048 in the control group; 1300±100/mm², 720±90/mm³, and 1.148±0.090 in the animals with slight vasospasm (n=12); and 7300±530/mm², 5610±810/mm³, and 1.500±0.120 in the animals with severe vasospasm (n=10), respectively (Table I).

DISCUSSION

Developing vagal nerve root injury in SAH causes disruption of efferent and afferent vagal reflex pathways that regulate respiration. The GPN, other lower cranial nerves and upper cervical spinal nerves are injured as well. Disruption extends into the cervical spinal canal, aggravating the mortal effects of SAH. These results in alteration in breathing pattern and respiration arrest (33) through initiating the Hering-Breuer reflex (24). All neurons generate electrical impulse when they are exposed to ischemia. Ischemic vagal nerves induced by SAH generate uncontrollable parasympathetic discharges and lead to lung edema via dilated pulmonary arteries (10). Excessive discharge of vagal nerves may be responsible for increased cholinergic activity on the heart and heart dysfunctions at the beginning of SAH. Non-discharged ischemic vagal nerves cause heart rhythm variation and cardiac arrest in the late phase of subarachnoid hemorrhage (5). Meanwhile, ischemic vagal nerve roots are unable to drive the parasympathetic stimulation of the pulmonary arteries and heart. Bilateral vagal nerve stimulation causes bronchoconstriction (24). One of the other important causes of breathing disability at the beginning of SAH is bronchoconstriction resulting from ischemic vagal discharge (9). Ischemic vagal nerve root injury is involved in the development of respiratory arrhythmia and pulmonary injury with bronchospasm (5).

Respiratory organs are innervated by the vagal nerves, sympathetic nerves and the upper four or five thoracic somatic nerves. The vagal nerves play a role in the maintenance of respiration via regulating airways and pulmonary vessel resistance, pulmonary pressure, the Hering-Breuer reflex, blood pH, respiration and heart rhythm coordination, and lung metabolism and immunity (36). Irritant receptors of the vagal nerves regulate breath rhythm via bronchial...
and tracheal constriction and slowing the heart rate (13). Cholinergic neurons, inhibitory noradrenergic neurons, and somatosensitive neurons that form pulmonaryplexuses are also in charge of controlling the calibers of conducting airways, diameter of pulmonary vasculature, volume of respiratory units and activity of bronchial glands and respiration reflexes (11,17,20).

Vagal nerve injury causes laryngopharyngeal muscle paralysis, tracheobronchial distortions, reflex vagal bradycardia, and bradypnea (29). Its blockage eliminates both the frequency and amplitude of spontaneous breaths (24), which is similar to irreversible axonal injury of the vagal nerve in late stage SAH (4,5). The Hering-Breuer reflex may also be abolished during acutely developed cerebral ischemia that could be restored by recovery of ischemic cerebral processes (7). Bilateral vagal nerve stimulation causes bronchocstriction (24) that is one of the factors contributing to breathing disability at the beginning of SAH linked to ischemic vagal discharge (1,9).

In SAH, through damaging brainstem and cranial nerve injuries (26), respiration muscles are paralyzed and breathing reflexes. All autonomic and somatic nerves control the calibers of the conducting airways and pulmonary blood vessels, the volume of respiratory units, the activity of bronchial glands and respiration reflexes (11). The somatosensitive motor nerves surround the respiration muscles, pleural and thoracic surfaces (23). Skeletal muscle proprioceptors of the somatosensitive nerves play a major role in the conscious continuation of respiration (28). The origins of sensory innervation of the lower respiratory tract are the nodose and jugular ganglia of the vagal nerve, and spinal ganglia at levels C2-C6 and T1-T6 ganglia (30). The sensory innervation of the rat lungs originates from the dorsal root ganglia (32). Stimulating the cervical sympathetic trunk in the caudal direction induces vasoconstriction in the bronchial and pulmonary vasculature (15). Infected ganglions of the olfactory, vagal, trigeminal nerves facilitate destruct lung functions and decrease lung immunity (1,2). Impulses of chemoreceptors are conveyed by GPN and vagal nerve fibers to the respiration centers (24). Vagal pulmonary myelinated afferents innervate lung tissue. Pulmonary neurons of vagal nerves are localized in NG (39). These afferent fibers sustain conduction velocity, neuropeptide content, sensitivity to chemical and mechanical stimuli, as well as evoked reflex responses of the lungs (22). Together with the vagal and spinal sensory fibers, sympathetic fibers form the pulmonary plexus that regulates lung functions via microganglia (34). The role of vagal nerve injury on the lung immune compartments in the SAH is related to cardiac arrest caused by ischemic nodosal and petrosal ganglia injuries of the vagal nerves.

The lung is invested with a rich supply of lymphatics and lymph nodes. The lymph nodes are an integral common part of the immune system of lungs dealing with external foreign substances, chylomicrons, lymphatic and metabolic particles, tumoral metastases and bacteria. Hyperthrophied hilar and intrapulmonary lymph nodes are frequently seen in serious lung disease. The lymphatic drainage into the lungs is via the thoracic ducts. The thoracic duct can be accepted as a canal conveying lymphatic products into the lungs. The lymphatic system of the lungs and the lymphatic vasculature have a major role in body homeostasis and immune surveillance and in the pathogenesis of lung disease (13, 31). The cholinergic anti-inflammatory pathway is a neurophysiological mechanism that regulates the immune system of lungs (16). Cholinergic pathways localized in the lung lymphoid tissues play a major role in general lung metabolism and neuro-immunomodulation (9,38). The immunoregulatory role of the vagal nerve on the lungs may be damaged secondary to vagal nerve injury, and the respiratory rhythm may be disturbed due to lung inflammation (18). The early stress responses to hemorrhagic shock, trauma, and endotoxicosis are associated with an early pro-inflammatory response characterized by increased lymphocyte accumulation in the lungs and included apoptosis in the injured lung tissue (25).

Neurogenic pulmonary edema (NPE) is a fatal complication of SAH. Chylomicron metabolism may be disturbed in NPE and leakage of chylomicrons into the systemic circulation may be facilitated via the destroyed lung barrier in SAH, leading to cerebral fat embolism (6). Not only chylomicrons but also other metabolic products, destructed tissue particles, infectious agents and even tumor cells are reported to be transported into lungs via the thoracic ducts. Indeed, systemic lipid embolism may not occur unless bone fractures lead to pulmonary injury (6). Thoracic duct ligation could prevent lungs from thoracic trauma and fat embolism (2,3).

There are no quantitative studies on the response of the LLNA diameter to the changes in living and degenerated neuron numbers of vagal nerves and NG. Changes in NG have not been studied to elucidate the relationship between SAH and lung lymph node infarct. SAH resulted in afferent and efferent vagal nerve complex ischemia at the brainstem due to vagal nerve root-supplying arteries’ vasospasm. Degenerated vagal ganglions’ neuron density may play major roles in the development of pulmonary LLNA vasospasm. The degenerated neuron density of vagal ganglia and axon densities were less in animals that experienced slight LLNA vasospasm, whereas the degenerated axon and neuron densities of vagal complex were higher in animals that experienced severe LLNA vasospasm.

CONCLUSION

This study showed that vagal nerve axonal injury and neuronal degeneration of NG correlated with LLNA vasospasm and lymph node infarct. From a clinical standpoint, the LLNA vasospasm and lymph node infarct may be related with NPE and vagal nerve stimulation could be a treatment method in pulmonary edema. Parasympathetic vasodilatory impulses of vagal nerves have major roles on the continuation of lung circulation within the normal limits. Ischemic injury of vagal nerve complexes induced by SAH can block the parasympathetic controls on the lungs and heart. Vagal nerve network degeneration leads indirectly to increased sympathetic hyperactivity. Decreased parasympathetic and increased sympathetic impulses trigger the development of massive lung edema and lung immune deficiency and
deplete the heart reserves. In brief, subcutaneous vagal nerve blockage may be useful at the beginning of SAH, whereas the vagal nerve stimulation or sympathetic blockage may be useful at the late phase of SAH.

REFERENCES