The Hope for Pandora’s Box: Mesenchymal Stem Cells for Promoting Angiogenesis in Stroke and Traumatic Brain Injury

Hua-jiang DONG1,2,3,*, Dingwei PENG4,*, Yuechen LUO5, Rui LIU2, Hui-juan YIN3, Lei WANG3, Hong SHA3, Hui-peng MENG1,*, Wang PING1,*, Chongzhi SHANG1,4,*

1Tianjin University, State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin, China
2Logistics University of Chinese People’s Armed Police Forces, Tianjin, China
3Chinese Academy of Medical Sciences & Peking Union Medical College Tech, Institute of Biomedical Engineering, Tianjin, China
4Specialty Medical Center of Chinese People’s Armed Police Forces, Department of Neurosurgery, Tianjin, China
5Chinese Academy of Medical Sciences and Peking Union Medical College, Institute of Hematology and Blood Disease Hospital, State Key Laboratory of Experimental Hematology, Tianjin, China
6Shandong Academy of Chinese Medicine, Jinan, People’s Republic of China

*Equal contributors

Corresponding author: Chongzhi SHANG, Wang PING, Hui-peng MENG

To the Editor;

We read the article with great interest by Li et al. entitled “2-Methoxyestradiol Inhibits Intracerebral Hemorrhage-Induced Angiogenesis in Rats” (6). In this paper, Li et al. reported that the Hypoxia-inducible factor-1α (HIF-1α) inhibitor, 2-Methoxyestradiol (2ME2) impaired post-intracerebral hemorrhage (ICH) angiogenesis and functional recovery and again in this paper the authors consider that HIF-1α may have a protective effect against ICH-induced damage. We agree with the conclusions drawn from Li et al., but there are some issues which are still in debate and further studies are needed to clarify to advance the rational design of the following clinical research. At the same time, we provide a promising paragon that can both promote vascular reconstruction (angiogenesis and arteriogenesis), and the lesion tissue repair which may provide a new perspective for the restoration and regeneration in neurological diseases.

Mesenchymal stem cells (MSCs) are a class of cells with significant self-renewal and multi-lineage differentiation properties, which are a class of seed cells in regenerative medicine (3,4). Over the years, our understanding of the nature and the function of MSCs has undergone a number of paradigm shifts. Initially, MSC-based therapies were anticipated to augment the structure and function of damaged or diseased tissues via direct cell replacement (5). However, it soon became apparent that relatively few MSCs engrafted at these sites of injury, and studies in rodents and dogs confirmed that intravenously administered MSCs are caught in the capillaries of the lung, and most MSCs are largely cleared (1,8). It had been long-known that MSCs produced abundant growth factors, and bio-active cytokines, many of which modulate the immune system, limiting inflammation, aiding healing, the field adopted the revisionist viewpoint that MSCs affect tissue repair largely via their paracrine factors and stimulation of host cells (7-9), which suggest that MSCs repair damaged tissue due to the ‘faking by bystander’ or cell-to-cell communication or exosomes and/or some metabolites and cytokines.

Whether the cell replacement or ‘faking bystander effect’ of MSCs, the role of MSCs in promoting vascular regeneration and tissue repair has been widely recognized. The studies have demonstrated the central role of HIF-1α in angiogenesis (Figure 1) (2). In some central nervous system disease, such as traumatic brain injury (TBI), stroke, cerebral ischemia-reperfusion (CI/R) injury HIF-1α is up-regulated, which provides a local microenvironment that could promote angiogenesis and reconstruction. The implanted MSCs (seed cells) can further promote the regeneration and reconstruction of blood vessels by ‘faking bystander effect’ or cell replacement (4,5).
Based on the above, MSCs or temperature sensitive MSCs (10) transplantation may be a potential method for regeneration and reconstruction of blood vessels.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (81801240, 81401067, 81771352), the Tianjin Research Program of Application Foundation and Advanced Technology (15JCYBJC45200 and 16JCYBJC27600), the CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-3-023), The PUMC Youth Fund and the Fundamental Research Funds for the Central Universities (3332015126).

REFERENCES