Lhermitte-Duclos Disease

M. ZAFER BERKMAN, ŞAFAK ULUER, TURGUT DERİNKÖK

SSK Okmeydani Hospital Department of Neurosurgery, İstanbul, Turkey

Abstract: Lhermitte-Duclos disease is a rare disorder characterized by a slowly enlarging mass lesion in the cerebellum. A case of histopathologically confirmed Lhermitte-Duclos disease is reported and our findings are discussed.

Key Words: Cerebellum, displastic gangliocytoma, Lhermitte-Duclos disease

INTRODUCTION

Lhermitte-Duclos disease, first described by Lhermitte and Duclos in 1920 (11), is a disease of rarely seen hamartamous lesion mostly situated within a cerebellar hemisphere, presenting with posterior fossa tumor findings most commonly in young and middle age adults (2-4,7,11,12,14,18,23,25).

Since the exact nature of the pathogenesis is not fully understood, different names have been given to this disease in literature. Gangliomatosis, displastic gangliocytoma, benign hypertrrophy of cerebellum, diffuse ganglioneuroma of cerebellar cortex, purkinjea, hamartoma of the cerebellum, neurocystic blastoma, hamartomablastoma, neurocytoma myelinicum, and gangliocytoma myelinicum diffusum are some of the other names used for this disease (7,10,19,23,26).

We report a case with histopathologically proven displastic gangliocytoma in which the patient had undergone an operation with the diagnosis of posterior fossa tumor.

CASE REPORT

The patient was a 24-year-old female, complaining of headache, ataxia, and visual disturbances in her right eye.

Her medical history revealed that she had 2 thyroid operations, the first four years ago, and the second one month ago, after which her complaints began.

Neurological examination demonstrated poor tandem gait with ataxia and deviation, dismetria, dysdiadochokinesia to the left side and bilateral papilledema.

Skull x-ray films showed no pathological findings. Computerized tomography (CT) revealed a mass lesion in the left cerebellar hemisphere...
extending to superior vermis leading to distortion in the brain stem and the 4th ventricle with the ventral portion contrast-enhanced and resulting with triventricular hydrocephalus (Figure 1).

Figure 1. Preoperative CT shows a hypodense mass lesion in the left cerebellar hemisphere leading to the distortion of the 4th ventricle and resulting in the hydrocephalus and the ventromedial part of the lesion a dilated vascular structure.

Magnetic resonance imaging (MRI) demonstrated a lesion on the lateral side of the left cerebellar hemisphere, nonhomogenous iso/hypointense in T1 weighted, hyperintense in T2 weighted sections; excluding the peripheral vascular structures, the parenchyma of the lesion was not contrast-enhanced and its contours were not well defined; the lesion compressed the rostral brain stem and the 4th ventricle. There seemed a dilated vascular structure on ventromedial part of the lesion; triventricular hydrocephalus and a syringomyelic cavity measuring 15x7x7 mm in size extending between C2-C3 levels could be seen (Figure 2). Vertebral angiography revealed a left cerebellar venous angioma in the left inferior cerebellar region, in which radially located veins converged upwards and drained into a broad venous structure (Figure 3).

During surgery, at sitting position, suboccipital craniectomy and C1-C2-C3 laminectomy were performed. When dura was opened the enlarged left cerebellar hemisphere was encountered. Just 1 cm beneath the cortical surface, the tumoral tissue, occupying fully 1/3 lateral part of the cerebellar hemisphere, grayish in color, nonhaemorrhagic but including small vascular malformations and partly aspiratable was found and totally excised. The venous angioma ventral to the tumor remained untouched. Then, applying a myelotomy, at C3 level the syringomyelic cavity was connected to the subarachnoid space by placing a shunt connector in between. Torkildsen shunting procedure was
Figure 3. Vertebral angiography shows a cerebellar venous angioma in the left inferior cerebellar region where radially extending veins converge upwards and drain into a broad venous structure.

performed for hydrocephaly and the dura was closed by duraplasty.

Histopathological examination revealed proliferated ganglion cells in the fibrillar stroma, and venous and arterial proliferated vascular formations in the cerebellar tissue samples. No morphological finding designating malignancy was observed. Diagnosis was confirmed dysplastic gangliocytoma and AVM (Figure 4).

Figure 4. Histopathological features of the lesion illustrating proliferated mature ganglion cells in fibrillar stroma. H&E×40.

She was well after the operation.

Follow up for 4 years reveals that the patient is well without any neuropathological findings. Control MRI has demonstrated no signs of recurrence and hydrocephalus and syringomyelic cavity have disappeared (Figure 5).

Figure 5 a and b. Control MRI demonstrates no signs of recurrence; hydrocephaly and syringomyelic cavity have disappeared.
DISCUSSION

Lhermitte-Duclos disease first described in 1920 by Lhermitte and Duclos(11) is a rare benign hamartomatous lesion of the cerebellum (2, 8, 11, 14, 18, 23, 25). Only a few cases have been reported in literature (2-4, 6-12, 14-23, 25, 26).

Whether it is a true neoplasm or a congenital anomaly needs to be investigated but because of the frequently accompanying congenital malformations such as megalencephaly, hydrocephaly, heterotopia, hydromyelia, and less frequently polydactyly, neurofibromatosis, mental retardation, spongioblastoma, partial gigantism, metastatic perithelioma, hyperplastic tongue and epilepsy, it is considered a congenital anomaly (6, 7, 15, 17-21, 23). Ambler et al(3) have reported a familial case seen in both the mother and the son. In our case, in addition to hydrocephaly and syringomyelia as a new entity for literature, venous angioma is being reported.

Venous angioma is a vascular malformation, usually asymptomatic, incidentally seen in CT, MRI and in angiography or detected after a SAH or epilepsy. Venous angiomas are particularly localized supratentorially in the frontal or parietal regions, less frequently in the posterior fossa (1, 5, 13, 24).

Lhermitte-Duclos disease, though mostly seen in young adults, has been reported at ages ranging from neonatal period to 74-year-old. It is most frequently seen between the 2nd and the 4th decades (3, 4, 12, 14). There is no sex predilection (14, 18). The patient in our case was a 24-year-old female.

Lhermitte-Duclos disease gives the typical findings of posterior fossa tumors. Most frequently headache, ataxia, visual disturbance, diplopia, nausea, and vomiting and less frequently paresthesia, neck pain, tinnitus, vertigo, confusion, hemiparesis, and mental changes are findings encountered (7, 12, 23).

Symptom duration ranges between 1 to 30 years, but most often between 1 to 3 years (1, 11, 12). Most commonly, the initial symptoms develop progressively but neurological deterioration can be seen spontaneously or following nonneurosurgical operation as in our case (3). Sudden decompensation and death have been reported in some cases (1, 10). Our case has been admitted due to complaints which arose one month after a guaifenesin operation.

As there is no family history or multisystem organ involvement except for guaifenesin, this disease is differentiated from the Cowden Syndrome, which is autosomal dominantly transferred and characterized by multisystem hamartomatous lesions (2,26).

Lhermitte-Duclos disease can not be definitely diagnosed radiologically before an operation and it presents with increased intracranial pressure and occipital bone deformity findings in direct craniograms (3,15). CT shows hypo or isodense non-contrast enhanced, and sometimes calcified lesions (6-8, 12, 14, 17-19, 22, 25). MRI shows hypointense in T1, hyperintense in T2 non-contrast enhanced posterior fossa mass lesion (7,8,12,14,17, 18,25,26). Angiography reveals a vascular mass lesion (8,22). Radiological findings in our case correlate well with literature.

Histopathologically, a marked reduction in the central white matter, the expansion of the granular layer, hypertrophy of granular cells, loss of purkinje cells, hypermyelinisation of the molecular layer, and multiple dysplastic ganglion cells in thickened folia can be seen (3,4,7,9,22,23).

Treatment is surgical and surgical results are satisfactory (3,6,10,19,20,22,23). The greatest problem in surgery is the insufficient cleavage in some of the cases (3,4,10,15,17). Only 3 recurrences in the 2nd, 4th and 11th years were reported (4,11,21). The effect of RT is not fully understood and is yet to be investigated (12,13). In literature, there are catastrophic results in the operated posterior fossa venous angiomas so we left it untouched (1,5,24).

In conclusion, the fact that this phenomenon is accompanied by lesions of congenital origin supports the idea that Lhermitte-Duclos disease, which should be considered as the differential diagnosis of posterior fossa masses, is a congenital malformation rather than a tumor.

Correspondence : M. Zafer Berkman
Halaskargazi Caddesi,
Mimler Apt. No:337, Kat 4
Şişli, İstanbul, Turkey
Tel: 212-2344156
212-2479882
Fax: 212-2749101
REFERENCES

