Primary Osseous Malignant Fibrous Hystiocyтомa
Of The Skull: A Case Report

Kafatasında Primer Osseöz Malign Fibröz Histiositoma:
Olgu Sunumu

KAYHAN KUZEYLI, ERTUĞRUL ÇAKIR, ABDÜLKADİR REİS,
SÜLEYMAN BAYKAL, HAVVANUR TÜRGUTALP

Abstract: Malignant fibrous histiocytoma rarely affects
the cranium. This report describes a case of primary
osseous malignant fibrous histiocytoma of the temporal
bone in a 58-year-old male patient. The tumor was thought
to have originated in the inner table of the bone of the
skull, with subsequent intracranial-extracranial extension.
Lung metastasis developed and the patient died 6 months
after the histopathological diagnosis. We discuss the case
and review the relevant literature.

Key words: Computerized tomography, magnetic
resonance imaging, malignant fibrous histiocytoma, skull

INTRODUCTION

Malignant fibrous histiocytoma (MFH) is a
malignant tumor typically found in soft tissue and
long bones (4,6,9). This neoplasm has been reported
in areas of irradiated (11) or traumatized bone, at sites
of infarcted bone (8), and in association with Paget’s
disease (7) and fibrous dysplasia (9), but MFH of the
skull is extremely rare (2,4-6,9).

CASE REPORT

A 58-year-old male presented with a nonspecific
left temporoparietal headache. Physical examination
revealed pain on palpation of the right
temporoparietal region as the only abnormality.
The patient’s neurological exam was normal.
Cranial x-rays showed abnormal bone density in the
right temporoparietal region (Figure 1).
Computerized tomography (CT) revealed
irregularity of the inner table of the skull bone in
this area, and a hyperdense lesion with no mass
effect in the adjacent brain tissue (Figure 2a). A
bone window CT scan of the same lesion
showed marked destruction of the inner table of
the cranium at the site (Figure 2b). Contrast-enhanced CT scans revealed no changes in
the lesion’s appearance. The patient’s blood
biochemistry and whole blood count were normal. A magnetic resonance imaging (MRI) study was also planned.

Twenty days after initial presentation, the patient’s headache had worsened considerably. Examination revealed a palpable and painful swelling in his right temporoparietal area. T2-weighted MR images showed a right calvarial extraaxial lesion with intra-extraaxial extension (Figure 3). We performed a right-sided temporoparietal craniectomy, and found a tumor originating from the inner table of the bone of the skull, with no macroscopic evidence of dural invasion. The mass was nodular and encased in a thin capsule. Surgery involved total excision of the
tumor, with no cranioplasty at the site of the bone defect.

Histopathologic examination revealed that the mass consisted of highly pleomorphic cells with atypical mitotic activity (Figure 4a-c).

Immunohistochemical studies showed that the neoplastic cells stained strongly for vimentin and alpha-1-antichymotrypsin (Figure 4d), showed focal mild staining for Factor 8 and S-100 protein, and did not stain for epithelial membrane antigen, or smooth muscle actin and desmin. The diagnosis was MFH, and the patient underwent treatment with fractionated radiotherapy (4,500 cGy). The patient died 6 months after the histopathological diagnosis, due to lung metastasis.

DISCUSSION

MFH is a malignant pleomorphic mesenchymal tumor that consists of a bicellular population of fibroblasts and histiocytes in varying proportions (12). This neoplasm is the most common malignant tumor of soft tissue (9,10,12), but is rarely seen in the bones of the skull and face (2,4-6,9,11). Our literature search revealed only 20 cases of the latter type (1,3-5,9).

According to Nakayama et al., MFH can originate from the inner table of the bones of the skull, from the diploe, or from the dura mater (9). Like other skull tumors, MFH can present as painful soft-tissue swelling. The tumor in our case first destroyed the inner table of the bone in the patient’s right temporoparietal area. At the time of our initial work-up, there was no notable intracranial or extracranial...
mass lesion (Figures 2a,b); however, MRI done 2 weeks later revealed a significant intracranial-extraaxial mass lesion (Figure 3). The literature provides no detailed information about the rate at which these tumors grow, but they are thought to progress rapidly. Treatment for MFH involves surgical removal followed by adjuvant chemotherapy and radiotherapy. Aggressive treatment is vital because of the tumor's potential to grow and metastasize quickly (9).

In summary, this report is significant because primary skull MFH is a highly unusual finding. Although there have been approximately 20 reported cases to date, our report is the first to document the occurrence of early bone destruction with no associated mass effect. We believe that primary MFH of the cranium originates from the inner table of the bones of the skull rather than the dura mater. Our case demonstrates the speed, at which these tumors can grow, a threat that highlights the need for new treatment modalities. The surgeon should always be suspicious of metastasis whenever a patient is diagnosed with MFH.

Correspondence: Doç.Dr. Kayhan Kuzeyli,
KTÜ Tip Fakültesi Nöroşirurji A.B.D.
61080, Trabzon, Turkey
Tel: +90 462 377 5454
Fax: +90 462 325 0518

REFERENCES