Terminal Syringomyelia Mimicking an Intramedullary Tumor: Case Report

ÖZ


ANAHTAR SÖZCÜKLER: Hemilaminetomi, Intramedüller tümör, Terminal syringomyeli, Gergin omurilik sendromu
INTRODUCTION

Syringomyelia is characterized by excessive accumulation of cerebrospinal fluid (CSF) within the spinal cord (13). Although concomitant hindbrain malformation exists with syringomyelia in the majority of cases (5), terminal syringomyelia in the lower third of the spinal cord is more commonly seen with spinal dysraphism, especially tethered cord (6,7). Syringomyelia also rarely develops in association with primary spinal intramedullary tumors (11,17) or intradural metastases (9). The pathogenesis, natural history and management of terminal syringomyelia remain controversial (18). Terminal syringomyelia can mimic intramedullary tumors; decision making for the approach and management can be more complicated in such cases. In this report we demonstrate the usefulness of exploratory hemilaminectomy to confirm diagnosis and even as a curative surgical approach for terminal syringomyelia, especially those associated with tethered cord.

CASE REPORT

A 14-year-old healthy boy presented with low back pain followed by progressive weakness of the lower extremities and urinary incontinence that developed over the past 3 months. On admission, the neurological examination revealed paraparesis which was more pronounced in the right leg (3/5), paraesthesia, paraparetic scissors-type gait with imbalance and sphincter dysfunction. There were no skin stigmata or spinal deformities. Thoracolumbar spinal magnetic resonance imaging (MRI) showed diffuse intramedullary lesion, with uncertain margins, which was hypointense on T1- and hyperintense on T2-weighted images with no contrast enhancement and extending from the level of the 10th thoracal vertebra to fill the sacral spinal canal (Figure 1A,B,C). Although no contrast enhancement was demonstrated, the expanding and the diffuse pattern of the lesion supported the radiological diagnosis of diffuse intramedullary tumor. Also, the diagnosis of fatty filum was radiologically excluded. Craniocervical MRI revealed no pathology. With the suspicion of the diagnosis of syringomyelia that extends through and expands the filum terminale, an exploratory hemilaminectomy was planned. Using a midline incision, the spinous process and the right lamina of L5 were exposed and a right hemilaminectomy was performed. After exposure of the dura, a longitudinal dural incision was made and the sides of the dura were hanged. An expanded spinal cord obliterating the spinal canal was seen and punctured with an injection needle followed by evacuation of large amount of CSF. Drainage of CSF resulted in shrinkage of the spinal cord. The filum terminale was found tethered and upward withdrawal of the spinal cord was seen after releasing with microscissors. The operation was ended without any complications. Clinical improvement was observed in the early postoperative period. In the postoperative fifth day urinary incontinence disappeared and in the postoperative seventh day the patient started to walk without support with minimal weakness in the lower extremities. After 1 year, the patient’s neurological examination revealed no neurological deficit and no urinary incontinence. Follow-up thoracolumbar spinal MRI obtained one year after operation demonstrated radiological regression of the pathology (Figure 2A,B,C). Three years after the surgery, the patient is still under the control of our outpatient clinic with no complaints and normal neurological examination.

DISCUSSION

Syringomyelia is caused by excessive accumulation of cerebrospinal fluid within the spinal cord (13). The pathophysiology of syringomyelia is still unclear although suggested theories may help us to understand the development and treatment strategies of this pathology. As suggested by Ball and Dayan (1) in 1972, there is probably an intracordal circulation of CSF from the subarachnoid space. It begins in the perivascular spaces (PVSs) and crosses the pia into the extracellular spaces in the cord and then the central canal. Rennels et al. (14) also thought that CSF in the central canal and spinal cord can move into the perivascular venous spaces and then to the subarachnoid space in a pseudo “lymphatic” system. From this point, movement of CSF through the arteriolar pial fenestrations, vascular space and interstitium to the central canal may occur (16). A return flow of fluid in the central canal or edema in the interstitial cord space to perivascular venous spaces in the cord may be produced by postural movement of the cord or straining, including the Valsalva maneuver. Syringomyelia was first classified by Barnett according to the relation between the cyst and the central canal into...
communicating (generally due to hindbrain malformations) and non-communicating (due to spinal dysraphism) (7). In 1997, American Association of Neurosurgeons (AANS) had suggested a new classification for syringomyelia based on the etiology. In this classification syringomyelia is subgrouped into: 1) syringomyelia related to the fourth ventricle, 2) syringomyelia related to CSF circulation disturbances, 3) post-traumatic syringomyelia, 4) syringomyelia related to spinal dysraphism, 5) syringomyelia related to intramedullary tumor and 6) syringomyelia of unknown etiology. Although the major cause of syringomyelia is hindbrain malformation (5) (i.e. the communicating type), terminal syringomyelia in the lower third of the spinal cord is generally not associated with hindbrain malformations and more commonly seen with spinal dysraphism (i.e. non-communicating type), especially tethered cord (6,7). Terminal syringomyelia was present in 24% of cases of tethered cord (6), 27% of cases of occult spinal dysraphism (7), in 54% cases of meningocele manque and in 38% of split cord malformations (7). Many modalities are used for radiological diagnosis, such as intravenous and intrathecal contrast-enhanced CT scans and myelography, but MRI is still the gold standard of spinal neuroimaging. MRI, particularly contrast-enhanced, not only shows the exact location and extension of the intramedullary tumors but also allows the differentiation of tumor cysts and syringomyelia (8,17). Although MRI is the best radiological investigation for the diagnosis of syringomyelia, radiological findings are still not pathognomonic and syringomyelia can be confused with other pathologies. Surgical treatment of terminal syringomyelia is indicated in symptomatic cases. Although the optimum surgical procedure is still controversial, syringosubarachnoid shunt placement seems to be an effective treatment in symptomatic cases (3,4,10). In terminal syringomyelia associated with tethered cord, as in our case, spinal dysraphism or intramedullary tumor, the cyst may show regression or even disappear after surgical treatment of the underlying pathologies (2,10,12,15). Although there is a risk of recurrence in cases of the syringomyelia treated without shunting, this risk is known to be low after the definite treatment of the underlying pathology, and restoring the normal CSF flow (2,10,12,15). In the present case, the authors preferred only to untether the cord, thus achieving definite treatment of the underlying pathology and expecting a high rate of success in treating the syringomyelia (2,10,12,15), which may avoid the need for syringosubarachnoid shunting and the insertion of foreign materials. Also, in the present case the authors attempted to perform exploratory hemilaminectomy first, where the pathology was questionable. In cases of tumors, this approach provides a sufficient window for biopsy, thus; aiding us to plan the appropriate approach for further management, or can be enlarged to laminectomy or laminotomy if it is decided to remove the tumor in the same operative stage. On the other hand, in cases of syringomyelia it is a minimal invasive approach for draining the cyst and releasing the tethered cord without the need for...
larger skin incision and bone exposure, thus; decreasing the risk of postoperative fibrosis and retethering.

REFERENCES