Trigeminal Neuropathic Pain Following Honeybee Sting: A Case Report

ABSTRACT
The neurological complications of bee venom poisoning vary from optic neuritis to pontine hematoma. However, to our best knowledge, trigeminal neuropathic pain secondary to bee sting has not been reported previously in the literature. We report the case of a 52-year-old male patient with right-sided trigeminal neuropathic pain that began a month earlier, following a honeybee sting to the right forehead. The patient was successfully treated by CT-guided percutaneous trigeminal tractotomy. The present report demonstrated that a honeybee sting may result in trigeminal neuropathic pain and CT-guided percutaneous trigeminal tractotomy is effective in the treatment of such cases.

KEYWORDS: CT-guided tractotomy, Honeybee sting, Trigeminal neuropathic pain, Neurological complications

ÖZ

ANAHTAR SÖZCÜKLER: BT-yardımlı traktotomi, Ari sokması, Trigeminal nöropatik ağrı, Nörolojik komplikasyonlar

Gokmen KAHILOGULLARI²
Hasan Caglar UGUR²
Mehmet TATLI³
Yucel KANPOLAT⁴

¹,²,⁴ Ankara University, Faculty of Medicine, Department of Neurosurgery, Ankara, Turkey
³ Dicle University, Faculty of Medicine, Department of Neurosurgery, Diyarbakır, Turkey

Received : 09.03.2009
Accepted : 20.07.2009

Correspondence address:
Gokmen KAHILOGULLARI
E-mail : gokmenkahil@hotmail.com
INTRODUCTION

According to the International Association for the Study of Pain, the term of 'neuropathic pain' refers to a group of painful disorders strictly characterized by severe pain caused by diseases of the central or peripheral nervous system (7,8,25,33). A recent proposal suggested that the definition should refer to an injury either in the peripheral or in the central nervous system or both, and it could be associated with various sensory and/or motor phenomena (7). When the pain is located in the head, the term of 'craniofacial neuropathic pain' is used to describe the main area involved in the syndrome (8).

It is known that multiple types of nerve injuries result in neuropathic pain, including infections, trauma, metabolic abnormalities, chemotherapy, radiation, surgery, neurotoxins, nerve compression and tumor infiltration (11). However, to date, trigeminal neuropathic pain caused by a honeybee sting has not been reported in the literature.

In the present paper, we reported a case of trigeminal neuropathic pain following a honeybee sting in a patient who was successfully treated by CT-guided percutaneous trigeminal tractotomy.

CASE REPORT

A 52-year-old man was admitted for a complaint of right-sided unremitting, severe facial pain. He had been stung on the right forehead by a honeybee a month before admission and received various drugs such as carbamazepine, tricyclic antidepressants and gabapentin. In addition, his face had been swollen but the swelling had resolved after three days. Ten day later, he had begun to suffer from hypoesthesia and burning sensation on the right side of his face. The pain was neuropathic with a paroxysmal pattern. On examination, we detected a hyperemia located on the first and second subdivisions of the right trigeminal nerve. VAS (Visual analogue scale) was 80 before the operation. Pseudobulloid-knobby lesions with a red-brown color were also detected on the same areas (Figure 1). All laboratory tests were within normal limits. His neuroradiological findings were normal. The neurological and physical findings were consistent with trigeminal neuropathic pain. After the diagnosis, a carbamazepine (800 mg/day) and gabapentin (900 mg/day) combination was started for a month, but the clinical consequences were disappointing. He therefore underwent CT-guided percutaneous trigeminal tractotomy 45 days after the bee sting (Figure 2). The operation was uneventful. After the operation, the neuropathic pain disappeared whereas hypoesthesia remained on the areas of first and second subdivisions of the right trigeminal nerve, and the burning sensation around the right ear persisted. VAS score was 30 after the operation.

DISCUSSION

The main clinical manifestations of bee venom poisoning are local allergic reactions at the site of the sting such as edema, erythema and burn-like

![Figure 1: The patient's pseudobulloid-knobby lesions with red-brown color on the right side of his face.](image1)

![Figure 2: The location of the needle-electrode system in this case for the CT-guided percutaneous trigeminal tractotomy procedure (axial CT section).](image2)
sensation, generalized reactions which include pruritis, urticaria, angio-edema and, in extreme cases, anaphylactic shock (10). However, some unusual neurological complications such as myasthenia gravis, peripheral neuritis, encephalomyelitis, optic neuritis, cerebral infarction, parkinsonism, pontine hematomy, thalamic and mesencephalic hemorrhages as well as the Guillain-Barre syndrome related to stings have been also reported in the recent literature (1,2,4,9,14,22,29-32).

In spite of above-mentioned neurological manifestations, trigeminal neuropathic pain secondary to bee sting has not been reported previously. This is the first report of trigeminal neuropathic pain following a honeybee sting. The patient was treated by CT-guided percutaneous trigeminal tractotomy. The surgical result was satisfactory as in other conditions such as atypical facial pain (19). Because of the normal radiological and laboratory findings, the patient’s history and neurological features, we assume that bee venom can cause trigeminal neuropathic pain. We consider it important that the general public and physicians should be aware of the serious complications of bee sting.

It is known that the main toxin in bee venom is mellitin, a strongly basic compound with strong surface activity. It is believed that its hemolytic effect is related to its effect on increasing permeability in erythrocytes and other cells. Three other polypeptide toxins (apamine, mast cell-degranulating peptide, and minimine) have also been identified. To some authors (24), the mechanism after nerve injury involves impaired function of both small unmyelinated fibers and large myelinated fibers, and hyperalgesia occurs with the sensitization of peripheral C nociceptors while other authors (28) postulate potential cross reactivity between venom constituents and central nervous system myelin as the mechanism for the reaction. On the other hand, no recommendations have been made regarding venom testing for insect venom exposure. The reactions such as acute encephalomyelitis and the Guillain-Barre syndrome have been described following one or two insect stings, but their mechanisms are not evident. The authors have reported that anti-myelin antibodies have been detected on several occasions, but the importance of their presence is unclear (28).

The main clinical features of neuropathic pain are a combination of symptoms and signs such as pain in areas with sensory loss, hyperexcitability and sympathetic involvement as well as summation of pain. Although textbooks and articles explain a lot of facial pain types (11,15,23), Burchiel (5,6) stated that trigeminal neuropathic pain is unintentional and seen with incidental trauma, non-triggerable, and unremitting unilateral facial pain. Its pathophysiology is explained with painful nerve injury of the distal trigeminal nerve. In our case, the pathogenesis of the trigeminal neuropathic pain may be explained with bee venom neurotoxicity.

Medical treatments and surgical procedures can be used for trigeminal neuropathic pain. Tricyclic antidepressants, gabapentin, intrathecal local anaesthetics and corticosteroids are the medical treatments used. In the surgical approach, peripheral neurectomy, percutaneous gangliolysis, motor cortex stimulation, stereotactic trigeminal nucleotomy, stimulation of the Gasserian ganglion and trigeminal rootlets are used for trigeminal neuropathic pain (3,12,13,16,18,20,21,26,27). However, we performed CT-guided trigeminal tractotomy for the treatment of this special case. The procedure is not only an effective procedure in denervating pain areas of the 5th, but also for pain areas of the 7th, 9th, and 10th nerves and nucleus caudalis (17).

Our surgical timing may be considered as early surgery and might be criticized. Nevertheless, we feel it had to be performed because the pain was unbearable and unremitting.

CONCLUSION

In conclusion, the present report demonstrated that a honeybee sting may result in trigeminal neuropathy and/or neuropathic pain in the first and second branches of trigeminal nerve. In addition, it showed that CT-guided percutaneous trigeminal tractotomy may be effective in the treatment of trigeminal neuropathic pain syndrome caused by unusual cause like a honeybee sting.

REFERENCES


