Profound Blockage of CXCR4 Signaling at Multiple Points Using the Synergy Between Plerixafor, Mirtazapine, and Clotrimazole as a New Glioblastoma Treatment Adjunct

ABSTRACT

CXCL12 signaling at CXCR4 is important in glioblastoma growth promotion as a migration-directing chemokine and as a mitosis-stimulating cytokine system. Recent developments in other areas of medicine may have made it now possible to comprehensively block glioblastoma’s use of CXCL12 signaling. CXCL12 signaling at CXCR4 requires an active intermediate conductance Ca2+-activated K+ channel to function. Plerixafor (AMD3100) is a new small molecular weight inhibitor of CXCR4, FDA approved to aid in stem cell mobilization. Inhibition of CXCR4 by plerixafor is expected to inhibit particularly the glioblastoma stem cell population by inhibiting that sub-population’s homing to the protective hypoxic niche. Histamine signals through the H1 receptor in glioblastoma cells to activate the intermediate conductance Ca2+-activated K+ channel also, thereby forming a potential bypass for inhibition of CXCR4-initiated signaling. The antidepressant mirtazapine is perhaps the most potent H1 antagonist in common clinical use. By inhibiting H1 stimulation of intermediate conductance Ca2+-activated K+ channels, it could prevent circumvention of CXCR4 inhibition by that path. The antifungal clotrimazole directly inhibits the intermediate conductance Ca2+-activated K+ channel at clinically achievable and well-tolerated doses. These three drugs used simultaneously are potential low morbidity paths to deeply inhibit CXCR4/CXCL12 signaling during cytotoxic glioblastoma treatment.

KEYWORDS: CXCL12, CXCR4, Glioblastoma, Homing, Hypoxic, Plerixafor

Richard E. KAST

University of Vermont, Psychiatry, Burlington, USA

Received : 12.06.2010
Accepted : 15.07.2010

Correspondence address:
Richard E. KAST
Phone : 802 863 24 62
E-mail : rekast@email.com

Review

425
INTRODUCTION

To improve the current poor prognosis of glioblastoma (1), a recent series of papers have appeared outlining some currently available drugs that block cytokines and growth factors that are active in promoting glioblastoma growth (2-13). These studies are summarized in Table I.

Although the drugs in Table I are not generally cytotoxic, they are FDA-approved and marketed around the world for non-glioblastoma indications. Ample research data points to their ability to block relevant cytokines or growth factors, as referenced in the Table. Also ample research data indicates that the listed cytokine or growth factor is indeed active in promoting glioblastoma growth. Table I matches these papers with the relevant glioblastoma cytokine or growth factor discussed, and the drug(s) suggested to inhibit them. To this list the current paper now adds three further drugs acting at three different but intersecting points along a prominent glioblastoma growth factor signaling pathway, that of CXCR4/CXCL12. Together the three drugs may synergistically inhibit this single growth-promoting pathway more completely than any used singly.

Mean glioblastoma survival times are commonly found to be 8 to 16 months, with younger patients, males, those with higher Karnofsky Performance Scores, and a tumor allowing total macroscopic resection having somewhat better survival time (1). Clearly better treatments are needed.

THE SPECIAL NATURE OF CXCR4 SYSTEM IN GliOBLASTOMA

CXCR4 function is a cornerstone of and a crucial signaling hub in glioblastoma growth. CXCR4 is an outer cell membrane chemokine receptor, found as one of three major species of 87, 67, or 55 kDa (14). After ligation of its only known cognate receptor, 8 to 12 kDa CXCL12 (previously known as SDF-1) multiple signaling events occur (14). A wide variety of cells migrate toward a CXCL12 gradient.

Interesting and important parallels can be drawn between the hypoxic pockets in glioblastoma tissue and the hematopoietic stem cell niche. In both glioblastoma (15-17) and the bone marrow hematopoietic stem cell niche (17-19) stem cells are directed towards the hypoxic niche that is required for maintenance of the stem cell population. The hypoxic glioblastoma niche is therefore an attractive target to destroy in glioblastoma treatment.

Particularly strong CXCR4 expression is seen in the glioblastoma sub-population with stem cell characteristics such as symmetric or asymmetric self-renewal and radio-resistance (16).

CXCL12 ligation by CXCR4 stimulates glioblastoma cells’ motility (20, 21), metabolism (22), and proliferation (15, 16, 23). Higher glioblastoma tissue levels of CXCR4 expression are associated with shorter survival (24, 25).

INTERMEDIATE CONDUCTANCE Ca++ ACTIVATED K+ CHANNEL AND THE CXCR4 SYSTEM IN GliOBLASTOMA.

An introduction to a particular K+ channel is required for understanding the comprehensive inhibition suggested in this paper: The intermediate conductance Ca++ activated K+ channel, IK(Ca) (also abbreviated KCa3.1) when open allows K+ egress, along its concentration gradient but against its electrical gradient, hyperpolarizing cells (20, 26). IK(Ca) is insensitive to voltage changes, opening only in response to exposure to an increase in intracellular Ca++ level. Calmodulin is constitutively bound to IK(Ca). It is Ca++ binding to that calmodulin that increases the K+ conducting pore open probability (26, 27). IK(Ca) is not expressed on CNS neurons but is amply expressed on CNS glia and CNS vasculature (26, 27).

IK(Ca) is richly expressed on glioblastoma cells and the abnormal vasculature within glioblastoma tissue (20, 28-30). Expression on both is not as curious as it seems at first glance since much of the abnormal malformed blood vessels within glioblastoma are in fact blood channels formed by the malignant glioblastoma cells themselves (31), without endothelial lining, smooth muscle tunica media, nor tunica adventitia. This process is called “vasculogenic mimicry” (31). In glioblastoma this process can be extreme, resembling an arteriovenous malformation on initial radiographic study (32).

THE DRUGS: clotrimazole, mirtazapine, plerixafor.

1. Plerixafor

In preclinical research on plerixafor (Mozobil®) it was called AMD3100 (33). It is a potent well-tolerated antagonist at CXCR4, FDA-approved and marketed for assisting in hematopoietic stem cell mobilization (33). By antagonism of CXCR4 plerixafor partially
defeats the CXCL12 gradient-directed homing within the hypoxic bone marrow niche, exerting thereby a centrifugal force (18) on CD34+ hematopoetic stem cells driving them into the periphery for harvest in apheresis prior to autologous transplant procedures. This has a parallel in glioblastoma physiology. Plerixafor is eminently suited for an adjuvant role during glioblastoma treatment and has been suggested previously for this (34, 35). The hypoxic niche is needed for or at least greatly enhances symmetrical self-renewal of glioblastoma stem cells (36-38). By thwarting or inhibiting CXCR4 directed glioblastoma stem cell sub-population homing towards the required hypoxic niche, radiosensitivity may be enhanced and the self-renewing stem cell population made more amenable to cytotoxic ablation by for example temozolomide.

A detail of CXCR4 physiology suggest that the addition of two other drugs to plerixafor will deepen CXCR4 system inhibition, augmenting stem cell sub-population killing ability by cytotoxic drugs and radiation: CXCR4 must signal through IK(Ca) (20). If this single report is correct we can hit this nodal point with two other drugs.

2. Clotrimazole
Clotrimazole is a widely available generic anti-fungal drug that happens to inhibit IK(Ca) in clinically achievable well-tolerated concentrations after oral administration (39-42).

3. Mirtazapine
Histamine signaling through H1 receptors goes as potentially useful during glioblastoma treatment previously (5, 20, 28). Since histamine signaling through H1 receptors going through a required IK(Ca) step also, potent H1 inhibition may further block residual CXCR4-related signaling as well as preventing circumvention. We have many potent H1 blocking drugs. Of drugs in common clinical use, the anti-depressants doxepin and mirtazapine have the tightest antagonistic (technically inverse agonist) binding to H1 (5). Mirtazapine would be preferable by both safety and tolerability standards.

CONCLUSIONS
By augmenting plerixafor with clotrimazole and mirtazapine we may be able to achieve a more profound inhibition of glioblastoma stem cell homing to the protective hypoxic niche than that obtained

Table I: Array of currently available drugs that, although FDA approved and marketed for other indications, may be of adjunctive benefit during standard current cytoablative treatment of glioblastoma. Abbreviations: BBB = blood-brain barrier. CCL5 = 8 kDa chemokine ligand for CCR5 and others, also known as RANTES. IK(Ca) = intermediate conductance Ca++ activated K+ channel. CXCR4 = cognate ligand for the 8 kDa chemokine CXCL12. NK-1R = the cognate receptor for 11 amino acid signaling peptide substance P. Ref. is the reference number where research on the listed glioblastoma cytokine or growth factor is reviewed, along with the drug(s) that have been shown in other contexts to inhibit that system.

<table>
<thead>
<tr>
<th>Cytokine, growth factor, or receptor system</th>
<th>Drug(s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cathepsin B</td>
<td>auranofin</td>
<td>2</td>
</tr>
<tr>
<td>substance P at NK-R1</td>
<td>aprepitant</td>
<td>3</td>
</tr>
<tr>
<td>aldehyde dehydrogenase</td>
<td>disulfiram, chloramphenicol</td>
<td>4</td>
</tr>
<tr>
<td>histamine at H1</td>
<td>mirtazapine</td>
<td>5, current</td>
</tr>
<tr>
<td>sigma-1 receptor</td>
<td>donepezil</td>
<td>6, 7</td>
</tr>
<tr>
<td>tyrosine kinase</td>
<td>dasatinib + imatinib synergy</td>
<td>8</td>
</tr>
<tr>
<td>serotonin receptor-7</td>
<td>pimozide, risperidone</td>
<td>9</td>
</tr>
<tr>
<td>CCL5 + NK-1R</td>
<td>miraviroc + aprepitant synergy</td>
<td>10</td>
</tr>
<tr>
<td>Src</td>
<td>methylnaltrexone</td>
<td>11</td>
</tr>
<tr>
<td>BBB opening</td>
<td>methamphetamine</td>
<td>8, 11, 12</td>
</tr>
<tr>
<td>interleukin-8</td>
<td>dapsone (+ cimetidine)</td>
<td>13</td>
</tr>
<tr>
<td>IK(Ca)</td>
<td>clotrimazole</td>
<td>current</td>
</tr>
<tr>
<td>CXCR4</td>
<td>plerixafor</td>
<td>34, 35, current</td>
</tr>
</tbody>
</table>

Kast R. E: Profound Blockage of CXCR4 Signaling at Multiple Points

Turkish Neurosurgery 2010, Vol: 20, No: 4, 425-429
by using any of them singly. These three medicines can then be added to the developing list of currently available glioblastoma cytokine and growth factor inhibitors.

Although the complete list (Table 1) of medicines is daunting and ungainly, there is no particular specific physiologic clash or predictable deleterious interaction between them. If all were to be used simultaneously, there would be no evident element of great concern other than the obvious unpleasantness of the number of drugs, the potential for unknown interactions, and the need for daily patient evaluation for the duration of such treatment. Clearly daily patient monitoring for the duration of treatment will be required to address and correct any incipient or developing problems given the unpleasant and untested medicine mix. The simultaneous use of the entire list of medicines in Table 1 would be reflexively repugnant and unprecedented in the treatment of any disease but potentially warranted given the bleak outlook for glioblastoma as things now stand.

REFERENCES
10. Kast RE: Glioblastoma: synergy of growth promotion between CCL5 and NK-1R can be thwarted by blocking CCL5 with miraviroc, an FDA approved anti-HIV drug and blocking NK-1R with aprepitant, an FDA approved anti-nausea drug. Journal of Clinical Pharmacy and Therapeutics 2010
17. Kast RE: How lithium treatment generates neutrophilia by enhancing phosphorylation of GSK-3, increasing HIF-1 levels and how this path is important during engraftment. Bone Marrow Transplant 41(1):23-26, 2007

