Pseudoaneurysm of the Superficial Temporal Artery Following Revision of a Middle Cerebral Artery Aneurysm Clipping: Case Report and Review of the Literature

INTRODUCTION

Aneurysm of the superficial temporal artery (STA) is a well known pathology since Thomas Bartholin’s first description in 1740 (4). Although some true STA aneurysms with congenital defect of internal elastic membrane of the artery are reported (3,17,28), most STA aneurysms are pseudoaneurysms. They can emerge either spontaneously (17,20), or as a complication of trauma (13,16), interventions (1,9) and injections (19). Pseudoaneurysms are rare complications of craniotomies (2,7,12,21-26). In this report, 59-year-old woman with a pseudoaneurysm of STA which developed following a revision surgery is presented.

CASE REPORT

A 59-year-old woman admitted with a recent history of severe headache. The neurological examination was normal except mild neck stiffness. A spontaneous subarachnoidal hemorrhage was detected on cranial computerized tomography (CT). A digital subtraction angiography (DSA) revealed a left sided saccular aneurysm at middle cerebral artery bifurcation. A control DSA on the 3rd postoperative day showed partial filling of the aneurysm and a revision was performed. The second control DSA on the 4th postoperative day of the revision showed a pseudoaneurysm of the left superficial temporal artery. The pseudoaneurysm was excised successfully under local anesthesia. In conclusion, pseudoaneurysm of the superficial temporal artery should be considered among the early postoperative complications of the surgical procedures at the superficial temporal artery territory. Although some conservative approaches are used, excision of the aneurysm is recommended for treatment.

KEYWORDS: Aneurysm, Craniotomy, DSA, Pseudoaneurysm, Superficial temporal artery

ÖZ


ANAHTAR SÖZCÜKLER: Anevrizma, DSA, Kranyotomi, Yalancı anevrizma, Yüzeysel temporal arter

Received: 26.01.2010 / Accepted: 23.03.2010
DOI: 10.5137/1019-5149.JTN.2944-10.1
artery (MCA) bifurcation. She underwent left pterional craniotomy and aneurysm clipping. A control DSA in the 3rd day showed that aneurysm was partially filling. The patient was reoperated and the aneurysm was clipped successfully with two aneurysm clips. No extraordinary event happened or observed throughout the opening and closure steps of the wound during the reoperation. In the 4th day of the reoperation, a second control DSA was performed. The aneurysm had been clipped without any residue; however a newly-developed lesion, a pseudoaneurysm of the left superficial temporal artery, was demonstrated at the operation site (Figure 1A-D). A cranial CT showed the aneurysm as a round and hypodense lesion (Figure 2). The patient underwent a third operation and the pseudoaneurysm of STA was excised under local anesthesia (Figure 3A,B). The 3rd postoperative period was unremarkable and the patient was discharged without any complications.

DISCUSSION

Aneurysms of the STA can present either as true or pseudoaneurysms. Trauma is the most common etiologic factor for the formation of pseudoaneurysms. Trauma can be blunt or penetrating, minor or major (4, 13, 26), solitary or multiple (22) in character. In the past, swords and bloodletting were common mechanisms of the traumatic injury (27). Today, gunshot wounds, motor vehicle accidents, and sport related injuries are leading causes (13). Injection (19) or a connective tissue disease like subcutaneous angiolymphoid hyperplasia with eosinophilia (5) may be responsible for the STA aneurysms. The pseudoaneurysms of STA can also arise as a complication of a surgical procedure. These operations can be non-neurosurgical per se, like reconstruction of the frontal sinus via a coronal flap (15), temporomandibular arthroplasty (6) and skin graft coverage (9). Placement of external ventricular drainage (1), removal of a tumor (21), of a hematoma (23, 23) and clipping of an intracranial aneurysm (2, 7, 12, 25, 26) are examples of neurosurgical procedures causing pseudoaneurysms of STA. However, a pseudoaneurysm formation following a revision craniotomy has not been reported before (Table I).

There are various pathophysiological mechanisms, possibly being responsible for pseudoaneurysm formation. There is a

Figure 1: DSA images of the patient, A) Left MCA bifurcation aneurysm (arrow), B) Partial filling of the aneurysm (arrow) with slipping of the aneurysm clip, C) Completely clipped aneurysm (arrow) without any residue, D) Pseudoaneurysm (arrow) on left superior temporal artery.
Hakan T, et al: Pseudoaneurysm of the Superficial Temporal Artery

consensus in the literature regarding occurrence of some kind of penetrating trauma during the surgery. The injury may be a partial transaction of the artery or a severe contusion to it with resulting necrosis of the arterial wall (8). Fernández-Portales and et al. (7) suggested that a pin head-holder was the cause in their case. The sharp point pins injured the scalp vessel during the rotational fixation. According to Angevine and et al (1), sharp instruments like a trocar that used during the operation can easily lead to a hemorrhage by perforating a few millimeters of the artery wall. In that report, cauterization of these injured vessels was thought very important for preventing pseudoaneurysms formation. Lee and et al. (12) also suggested that the pseudoaneurysm formation was the result of an inadvertent damage of a segment of STA, possibly with electrocautery in fashioning the scalp flap. Tsutsumi and et al (25) mentioned a suture needle traumatizing the STA

and removal of the thread causing hemorrhage at the injury site, ending up with formation of pseudoaneurysm. Shimoda (22) reported that coagulopathy would be important in these cases. In the presented case, there was neither coagulopathy, nor a pin head-holder fixation device or no new incision. The thread was also kept in their position. The time duration for development of a pseudoaneurysm in the literature ranged in between 10 days (14) to 3 years (26), however, in the presented case it took just 4 days for formation of the aneurysm.

A thorough history and physical examination are very important for diagnosis of these lesions. A STA pseudoaneurysm mostly presents as a mass lesion in the territory with a history of trauma (15). These masses can be painful (11), “uncomfortable” (16), indolent (25), pulsatile (13,18,26), enlarging (14), tender (2,13), non-tender (26) rubbery (1), erythematous (2) or without any cutaneous erythema (12) and bruit can be appreciable on auscultation (18). A pulsating mass that is easily compressible with digital pressure and bruit on auscultation are very discriminating features (13,18).

Imaging studies for accurate diagnosis of STA pseudoaneurysm can be either invasive or noninvasive; sonography (2,3), contrast enhanced CT scanning (11,16), CT angiography (10,11,16,26), 3-dimensional CT angiography (18) and selective angiography (2,11,25) are the most commonly used techniques. The differential diagnosis of STA pseudoaneurysms include abscess, hematoma, inflammatory lesion, parotid mass, lipoma, epidermal inclusion cyst, enlarged lymph node, a tumor of facial nerve, arteriovenous malformation or fistula and middle meningeal artery aneurysm with bony erosion (1,11,13,26).

The pseudoaneurysms of the STA should be treated in order to reduce the risk of rupture and hemorrhage, treatment of headache, resolving the cosmetic defect and reducing long term risk of potential bony erosion and recurrence by reaching enormous dimensions (2,10,11,13,16,25). It may also cause seizures and ischemia in the scalp. Conservative approach for treatment of STA aneurysm is known since 1861 (13) and can be advised particularly for critically ill patients (10). Excision, injection of thrombin glue (2) and endovascular embolization

Figure 2: A round, hypodense lesion (arrow) seen with hematoma in the left temporal region of the scalp in CT.

Table I: The List of the Patients with Pseudo-Aneurysm of the STA Following Craniotomy

<table>
<thead>
<tr>
<th>Author</th>
<th>Age &amp; Sex</th>
<th>Cause of Craniotomy</th>
<th>Duration time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bobinski and et al. (2004)</td>
<td>73, M</td>
<td>Aneurysm clipping</td>
<td>17 days</td>
</tr>
<tr>
<td>Fernández-Portales and et al. (1999)</td>
<td>51, M</td>
<td>Aneurysm clipping</td>
<td>3 weeks</td>
</tr>
<tr>
<td>Lee and et al. (2002)</td>
<td>52, M</td>
<td>Aneurysm clipping</td>
<td>3 months</td>
</tr>
<tr>
<td>Shimoda and et al. (1988)</td>
<td>17, M</td>
<td>Traumatic intracranial hematoma</td>
<td>40 days</td>
</tr>
<tr>
<td>Rousseau and et al. (1985)</td>
<td>?,?</td>
<td>Frontal lobe meningioma</td>
<td>?</td>
</tr>
<tr>
<td>Tatewaki and et al. (1994)</td>
<td>?,?</td>
<td>Chronic subdural hematoma</td>
<td>?</td>
</tr>
<tr>
<td>Tsutsumi and et al. (2000)</td>
<td>48, M</td>
<td>Aneurysm clipping</td>
<td>40 days</td>
</tr>
<tr>
<td>Walker and Liu (2000)</td>
<td>50, M</td>
<td>Aneurysm clipping</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Present case (2010)</td>
<td>52, F</td>
<td>Aneurysm clipping (revision of aneurysm clip)</td>
<td>4 days</td>
</tr>
</tbody>
</table>
by coil (11) or Gelfoam (22) are used for the treatment. There are some objections to injection of thrombin glue because of the risks of administering thrombin systemically (24). Surgical treatment is commonly recommended for these lesions. Surgery can be performed under local anesthesia and provide accurate treatment as the presented case.

In conclusion, pseudoaneurysm of the superficial temporal artery should be considered among the early postoperative complications of the surgical procedures at the superficial temporal artery territory. Although some conservative approaches are used, excision of the aneurysm is recommended for treatment.

REFERENCES


Figure 3: A) The macroscopic appearance of the pseudoaneurysm with cavitation like image, B) Wall of pseudoaneurysm formed by organized hematoma. (H&E X 40)
Hakan T, et al: Pseudoaneurysm of the Superficial Temporal Artery


