ABSTRACT

AIM: To evaluate the effectiveness of transforaminal epidural steroid injection (TFESI) for lumbar radiculopathy with respect to effect of injection levels, gender, and age group.

MATERIAL and METHODS: Hundred-fifty-three consecutive patients who underwent to lumbar TFESI were enrolled. The outcomes were measured by using a visual numeric scale (VNS), NASS and EQ-5D. The relationship between possible outcome predictors and the therapeutic effect were evaluated.

RESULTS: All the patients completed the 2nd year follow-up visits. Significant differences were observed between the pre-procedure and post-procedure VNSs, NASS patients’ satisfactions scores and EQ-5D (P < 0.01) except 1st and 2nd year follow-up (P=0.12, P=0.27 and P=0.19 respectively). Gender (higher in female patients) showed significant effect to pre-procedure VNS (P=0.04). An increase in the level number was significantly associated with an increase in the 6th month (P=0.005, P=0.004 respectively) and the 1st year (P=0.05, P=0.029 respectively) NASS and EQ-5D. No complication was occurred except discitis in two chronic renal failure patients.

CONCLUSION: Especially in the patients with severe co-morbidities TFESI is an option to provide higher life quality. The clinical course of the success of the TFESI decreases in one year and becomes stable thereafter. In the patients with immune deficiency, the practitioners should always be aware for an infectious complication.

KEYWORDS: Transforaminal, Steroid, Injection, Lumbar, Radiculopathy

ÖZ

AMÇA: Lomber radikülöpatide uygulanan transforaminal epidural steroid enjeksiyonunun (TFESİ) segment sayısı, cinsiyet ve yaş gruplarına göre etkiliğinin araştırılması.

YÖNTEM ve GEREÇLER: Lomber TFESİ 153 hastaya yapıldı. Hastaların sonuçları numerik ağrı skalası (NAS), NASS ve EQ-5D ile değerlendirildi. Sonuçu etkileyebilecek faktörler ve bunların sonuçlarına etkisi incelendi.

BULGULAR: Hastaların hepsi 2. yıl takiplerini tamamladı. NAS, NASS memnuniyet skalası ve EQ-5D (P < 0.01) değerlerinde, birinci ve ikinci yıl değerlendirilerek, birincisi ve ikincisi yıl değerlere hareket (siralama P=0.12, P=0.27 ve P=0.19) işlem öncesi ve sonrası tüm değerlere anlamli fark tespit edildi. Cinsiyet (bayan hastalarda daha yüksek) işlem öncesi VNS üzerinde etkiliydi (P=0.04). Segment sayısındaki artışın, altıncları ay ve birincili yol NASS (siralama P=0.005, P=0.004) ve EQ-5D (siralama P=0.05, P=0.029) sonuçlarında anlamli artışa sebep olduğu gözlandı. Kronik böbrek yetmezliğindeki iki hastada gelişen diskitis dışında hastalarda komplikasyon gelişmedi.

SONUC: Özellikle ağrı kronik hastalıklar olan hastalarda TFESİ, hastaların hayat kalitelerinin yükseltilmesinde önemli bir seçenektir. Hastaların faydaların oranları bir yıl içinde azalırken birinci yıldan itibaren sabit kalmaktadır. Özellikle bağırsık problemi olan hastalarda, gelişebilecek infeksiyon riski açısından tetikte olmak gerekktedir.

ANAHTAR SÖZÜKLER: Transforaminal, Steroid, Enjeksiyon, Lomber, Radikülöpati
INTRODUCTION

Intervertebral disk herniation and degenerative lumbar spinal stenosis are the two most common causes of lumbosacral radiculopathy (6, 26). Laboratory evidence implicates inflammation of the affected nerve roots in the mechanism of pain (7). The involvement of inflammation has attracted the use of steroids to reduce the inflammation and, thereby, relieve the pain (7).

Lumbar transforaminal epidural steroid injection (TFESI) provides better delivery of medication to the site of radiculopathy with minimal risk of dural puncture.

TFESI, when appropriately performed, should result in significant improvement. These procedures can reduce the patient’s pain by 64% to 81%, disability by 60% to 63% and depression by 56%. Considering the low risk and less expensive nature of the procedure, compared to surgical interventions, epidural injections with or without steroids seem to be cost effective (4).

Most of the studies suggest that TFESI has certain efficacy, but offers only short-term relief (2, 11, 13, 15, 22).

We report the effectiveness of preganglionic TFESI approach in patients with low back pain due to either the lumbosacral radiculopathy or stenosis. This study is the update of the study performed by Kabatas et al (12).

MATERIAL and METHODS

The advantages and disadvantages of TFESI were carefully explained to the patients and their families. During a 3-year period from February 2008 to June 2009, 153 consecutive patients (109 (71.2%) female and 44 (29.8%) male patients; mean age, 59.9±15.8 years; range, 22–90 years) who underwent lumbar TFESI at our department were enrolled in our study. Patients were suffering from their symptoms since 16.6±12.7 months. Thirty-eight (%24.8%) patients had TFESI from one, 70 (45.8%) from 2 levels, 30 (19.6%) from 3 levels, 11 (7.2%) from 4 levels and 4 (2.6%) from 5 levels respectively.

The selection criteria for inclusion were: 1. sustaining radicular pain for more than three months in duration; 2. failure of conservative treatment; 3. definitive evidence of nerve root compression with either subarticular or paracentral disk herniation or central canal and/or lateral recess stenosis at the superadjacent intervertebral disc based on physical examination and magnetic resonance imaging (MRI). The exclusion criteria of study included: motor deficits; cauda equina syndrome; medical problems that contraindicated the procedure; history of an allergic reaction to local anesthetics; medical problems that contraindicated the procedure; 3. definitive evidence of nerve root compression with either subarticular or paracentral disk herniation or central canal and/or lateral recess stenosis at the superadjacent disk level on the posteroanterior view. TFESIs were performed in the operation theatre equipped with a planar fluoroscope (Siemens™, Munich, Germany) while the patients were prone. After sterile preparation, draping, and local anesthesia with one percent lidocaine, a 9-cm long, 21-gauge needle (Stimuphi™ [insulated peripheral nerve block needle]; Arrow International, PA, USA) was advanced towards the involved neural foramen under fluoroscopic guidance. The needle position was tracked via fluoroscopy, and 1 mL of contrast material (Omnipaque 300™ [iohexol, 300 mg iodine per milliliter]; Amersham Health, Princeton, NJ) was injected to confirm epidural flow and to avoid intravascular, intradural, or soft-tissue infiltration. Upon confirmation of reaching the intended injection site, posteroanterior and oblique spot radiographs were obtained to document distribution of the contrast material. Lee et al (16, 17) described that for the preganglionic approach, the landmark for needle insertion was slightly lateral to the pars interarticularis on the oblique view, and at the neural foramen near the nerve root impingement site at the superadjacent disk level on the posteroanterior view (Figure 1A, B). Then 0.5 mL of bupivacaine HCl (Marcaine Spinal 0.5% Heavy™; AstraZeneca, Istanbul) was injected (~1 min), followed by 40 mg (1 mL) of methylprednisolone acetate suspension (Depomedrol™ Eczacibasi Ilaı San., Luleburgaz, Kirkareli).

Follow-up and clinical evaluation

The mean follow–up of the patients was 20.70±5.6 months. The Visual Numeric Pain Scale (VNS), North American Spine Society (NASS) patient satisfaction questionnaire and (Euro-Qol in 5 dimensions) EQ-5D were used to evaluate the therapeutic efficacy of TFESIs (12). VNS measured experienced pain with 0 representing no pain and 10 representing the worst pain imaginable. The EQ-5D descriptive system comprises the following 5 dimensions: mobility, self-care, usual activities, pain/discomfort and anxiety/depression. Each dimension has 3 levels: no problems, some problems, extreme problems. A score of 5 was representing best score and 15 the worst score. In NASS classification 1 was representing the fully meeting of patient’s expectation, 2 less improvement than the hoped expectation but the patient would undergo the same procedure again, 3 the TFESI helped but the patient would not undergo the same procedure again and 4 the same or worse status with respect to pre-operative status. Patients were evaluated before the procedure and at one week after the procedure. Those who responded favorably to TFESIs...
were then placed in a spine rehabilitation program for four to six weeks to maximize the functional gains. Those who did not respond or responded partially were offered either surgery or physical therapy.

VNS and EQ-5D was recorded at the first clinical examination prior to TFESI. Patients were asked prior to, soon after, and one week after the injections. Patient outcomes were assessed one month after the TFESIs (short term) by an physical therapy and rehabilitation specialist (D. M.) who was blinded to the pre-injection scores. The evaluator used VNS, EQ-5D and NASS patient satisfaction questionnaire to assess the patient's own assessment with regard to the degree of improvement. Patients were then re-evaluated over the phone by a blinded independent observer (A. K.) at 6th month, 1st year and 2nd year. A reduction in the VNS of more than 50% after the injection and with NASS score of 1 and 2 and EQ-5D less than 9 were classified as successful treatment, and a reduction in the VNS of less than 50% after the injection; with NASS score of 3 and 4 and EQ-5D equal and more than 9 were classified as failed treatment. Patients who had subsequent surgery after injection were also deemed to have failed treatment.

Statistical analysis

Data were analyzed by SPSS version 13.0 software. The level of correlation between the pre-procedure and follow-up VNS, EQ-5D and NASS scores were determined using Pearson Correlation test, with \(P < 0.05 \) with 95% confidence intervals considered statistically significant. The effects of the variables (age, gender, symptom duration, level number pre-op EQ-5D and pre-op VNS) to the results were analyzed using linear regression test, with \(P < 0.01 \) with 99% confidence intervals considered statistically significant. Paired Samples T test was used to compare the means of the variables (VNS, EQ-5d and NASS) with \(P < 0.05 \) with 95% confidence intervals considered statistically significant.

RESULTS

All the patients completed the 2nd year follow-up visits. All VNS, EQ-5D and NASS scores were significantly correlated with respect to their follow-up times (\(P < 0.01 \)). The mean pre-procedure, post-procedure, 1st month, 6th months and 1st and 2nd year post-procedure VNSs (mean±SD) were 9.15±0.44, 1.12±0.44, 2.73±1.3, 3.88±2.15, 4.47±2.6 and 5.2 ± 2.4 respectively (Figure 2). Significant differences were observed between the pre-procedure and post-procedure VNSs (\(P < 0.01 \)) except 1st and 2nd year follow-up (\(P=0.12 \)). Gender (higher in female patients) showed significant effect to pre-procedure VNS (\(P=0.04 \)). NASS patients' satisfactions scores were 1.1±0.6, 1.6±1.2, 1.9±1.4 and 2±1.4 in the 1st month, 6th month, 1st year and second year follow-up’s respectively (Figure 2). Significant differences were observed between all follow-up values (\(P < 0.001 \)) except 1st and 2nd year follow-up (\(P=0.27 \)). An increase in the level number was significantly associated with an increase in the 6th month (\(P=0.005 \)) and the 1st year (\(P=0.05 \)) NASS. The mean pre-procedure, 1st month, 6th month and 1st and 2nd year post-procedure EQ-5D scores were 14.5±0.65, 5.35±1.6, 6.8±3.1, 7.7±4.1 and 8.2±4.2 respectively (Figure 2). Significant differences were observed between all follow-up values (\(P < 0.001 \)) except 1st and 2nd year follow-up (\(P=0.19 \)). An increase in the level number was significantly associated with an increase in the 6th month (\(P=0.004 \)) and the 1st year (\(P=0.029 \)) EQ-5D. The success rate of the procedure with respect to follow-up periods was summarized in Figure 2. These were almost consistent and sustainable clinical improvement after TFESI over the 12 months period when VNS, EQ-5D and NASS progressively decreased. However there was no significant decrease in the success rate between 1st year and 2nd year follow-up.

These comparisons indicated that the therapeutic benefits of TFESIs occurred immediately by the injection, and the beneficial effects of TFESIs are decreasing slowly over twelve months and maintain almost stable thereafter (Figure 3).

Three patients required surgery in the first six months after the procedure. No patients required any surgical procedure after the 6th month follow-up.

No complication was occurred except discitis in two patients. Retrospective examination of the data of these patients

Figure 1: Upon confirmation of reaching the intended injection site, posteroanterior and oblique spot radiographs were obtained to document distribution of the contrast material. The landmark for needle insertion was slightly lateral to the neural foram from the nerve root impingement site at the supra adjacent disk level on the posteroanterior (A) and oblique (B) view.
therefore does not cover the contralateral side (3, 25). We therefore performed the procedure bilaterally if the patient had bilateral symptoms of radiculopathy.

Jeong et al (11) concluded that there was no significant difference in therapeutic effect due to symptom duration at short-term (within one month) follow-up. Shorter symptom duration favors a better outcome than does longer symptom duration at midterm follow-up (6 month). This may mean that the patients with longer symptom duration have a tendency toward experiencing recurrent pain attacks. Patients with spinal stenosis exhibited a similar therapeutic effect when compared with those who had intervertebral herniated disk at short-term follow-up (41 of 47, 87.2%) (Table I). Lutz et al. have reported that patients with pre-injection symptom durations of less than 36 weeks were most likely to respond to treatment (18). Vinton et al. have found that the decrease in pain was greater for the patients less than 50 years of age than for the older patients after TESI for lumbar radiculopathy (27). In our series, the symptom duration and age of the patients had no significant association with pre-procedural or short term or long term post-procedural clinical status.

One problem of epidural steroid injections is that their benefit lasts only for a short duration (2, 13, 15, 22). Ridley et al (22) reported that the therapeutic benefits disappeared within 6 months of treatment. Jeong et al (11) found a success rate of 60.4% in the patient group at the follow-up interval of more than 6 months. Lutz et al (18) showed that 75.4% of patients who underwent TFESI also had a successful midterm outcome at an average follow-up of 20 months. Other previous prospective randomized trials studying the effectiveness of TFESI concluded that these injections can provide positive long-term relief (24, 26) (Table I). In our series, the success rate was %95.4 in the first months; this rate showed progressive regression in the 6th month (%78) and in the 1st year (%69.6). However, this progression showed decrease between the 1st and the 2nd year (%65.7).

Ghahreman et al. (7) concluded that a significantly greater proportion of patients treated with transforaminal injection of steroid (54%) achieved relief of pain than did patients treated with transforaminal injection of local anesthetic (7%) or transforaminal injection of saline (19%), intramuscular steroids (21%), or intramuscular saline (13%). But over time, only some of the patients maintained relief beyond 12 months. Therefore steroid with local anesthetics was used in our clinic to maintain a longer success.

Initial observational studies showed that TFESI spared patients from surgery (28) or provided greater than 50% relief of pain in over 70% of patients (18). A controlled study confirmed the surgery-sparing effect (24), which persisted at 5-year follow-up (25). Especially in the patients with severe co-morbidities or in the patients with severe clinical symptoms who are very young for a complicated spine surgery, TFESI is a very strong option to provide higher life quality.

![Figure 2: All VNS, EQ-SD and NASS scores respect to months.](image)

![Figure 3: Success ratio of the patients respect to follow-up months.](image)
Table I: Success Rate of the Similar Series Cited in the Study

<table>
<thead>
<tr>
<th>EQ-5D</th>
<th>1st month</th>
<th>6th month</th>
<th>1st year</th>
<th>2nd year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cansever et al</td>
<td>95.4</td>
<td>78</td>
<td>69.6</td>
<td>65.7</td>
</tr>
<tr>
<td>Jeong et al (11)</td>
<td>87.2</td>
<td>-</td>
<td>60.4</td>
<td>-</td>
</tr>
<tr>
<td>Lutz et al (18)</td>
<td>-</td>
<td>-</td>
<td>75.4</td>
<td>-</td>
</tr>
<tr>
<td>Ghahreman et al.</td>
<td>-</td>
<td>-</td>
<td>54</td>
<td>-</td>
</tr>
<tr>
<td>Riew (24)</td>
<td>-</td>
<td>80.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

TFESI can be dangerous (1, 14), if carelessly performed. Guidelines for the safe procedure have been published (10), emphasizing particularly the need to be aware of unintended, intra-arterial injection of particulate steroids.

Manchikanti et al. concluded that a common problem encountered with epidural injections is inaccurate needle placement, which also results in inaccurate placement of the injectate (19). This study also showed significant intravascular needle placement (22%), with 5% of the total procedures being negative for flashback, as well as aspiration for blood, even though contrast injection was positive (19). We therefore used the local anesthetics for the test of the needle placement before the steroid injection. If the patients experience any paresis or paresthesia, the needle was replaced again to the optimum position.

Complications from lumbar TFESIs include increased pain, bleeding, dural puncture, subdural injection, damage to the spinal nerve, spinal cord infarction, and infection (14). Infectious complications following commonly performed lumbar TFESI are very rare. However, bacterial meningitis, epidural abscess formation and discitis have all been reported in the literature (8, 21, 29).

Intradiscal contrast injection is an infrequently reported event during lumbar transforaminal epidural steroid injections. The prevalence of inadvertent intradiscal injection during lumbar transforaminal epidural steroid injections was presented as 0.17% in the literature (10) and it was concluded that all of the patients received prophylactic antibiotics after inadvertent disk injection, and there were no infectious or other complications identified (10). In our study, spondylodiscitis was observed in two patients. Both of the patients have the same history of hemodialysis-dependent chronic renal failure. During the procedure inadvertent intradiscal injection was not detected and routine prophylactic antibiotics were given. Additionally, iohexol (omnipaque) by itself is bacteriostatic. This may be due to low immune response of these patients. To our knowledge, this is the first study that showed the chronic renal failure is a risk factor in spondylodiscitis development (two (11%) of the 18 chronic renal failure patients) after TFESI. Discitis resulting from discography procedures averages about 0.1% to 0.3% per patient per procedure (5). In the chronic renal failure patients this ratio was increased to 11.1% in our study. In our all procedures different needles are used for each level, which can potentially decrease the risk of introducing bacteria into a disc. Hooten et al (9) reported the patients having infectious complications after spinal injections had a history of diseases or were taking medication that impaired immune function.

We were able to identify a limitation of our study. This was a retrospective analysis; we were only able to obtain the data within the medical record. But, most of the data (patients satisfaction scores) were obtained by an independent person who didn’t know the patients medical history and the procedure.

CONCLUSION

Especially in the patients with severe co-morbidities or in the patients with severe clinical symptoms who are very young for a complicated spine surgery, TFESI is a very strong option to provide higher life quality. The clinical course of the success of the TFESI decreases in one year and form 96% to 70% however the course becomes stable thereafter. In the patients with immune deficiency the antibiotic prophylaxis can be given for a longer period even though the practitioners should always be aware for an infectious complication.

REFERENCES