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ABSTRACT 

Subarachnoid hemorrhage (SAH) due to intracranial aneurysm rupture is a complex clinical disease with high mortality and morbidity. Recent 
studies suggest that early brain injury (EBI) rather than vasospasm might be responsible for morbidity and mortality within 24-72 hours after 
SAH. The rise in intracranial pressure following SAH causes a significant drop in cerebral perfusion pressure that leads to global cerebral 
ischemia and initiates the acute injury cascade. Various molecular mechanisms have been shown to involve in the pathophysiology of EBI 
including cellular apoptosis. In this review, we summarize apoptotic molecular mechanisms involved in the etiology of EBI and its potential as 
a target for future therapeutic intervention.       
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ÖZ 

Intrakraniyal anevrizma rüptürüne bağlı gelişen subaraknoid kanama (SAK), yüksek mortalite ve morbidite ile seyreden kompleks bir hastalıktır. 
Yakın zamanda yapılan çalışmalar SAK sonrası 24-72. saatler içinde gelişen morbidite ve mortaliteden vazospasmdan ziyade, erken beyin 
hasarının sorunlu olduğunu ileri sürmüştür. SAK sonrasında gelişen intrakraniyal basınç artışı, serebral perfüzyon basıncında ciddi düşüşe 
neden olup global serebral iskemi ile sonuçlanır ve akut hasar kaskadını başlatır. Hücresel apopitoz dahil pek çok moleküler mekanizmanın 
erken beyin hasarının (EBH) patofizyolojisinde rol oynadığı gösterilmiştir. Bu derlemede; EBH etiyolojisinde rol alan apopitotik mekanizmalar 
ve bunların gelecekte potansiyel tedavi hedefi olarak önemleri özetlenmiştir.        

ANAHTAR sÖZCÜKLeR: Apopitoz, Erken beyin hasarı, p53, İnme, Subaraknoid kanama 

Correspondence address: Ihsan SOlAROglu   /  E-mail: isolaroglu@ku.edu.tr   

Simge YukSEl1, Yusuf Berk ToSuN1, Julian Cahıll2, ıhsan Solaroglu3     

1Koç University, Faculty of Medicine, Neuroscience Research Lab., Sariyer, Istanbul, Turkey
2University Hospitals Coventry and Warwickshire, Department of Neurosurgery, Coventry, United Kingdom
3Koç University, Faculty of Medicine, Department of Neurosurgery, Sariyer, Istanbul, Turkey

Early Brain Injury Following Aneurysmal 
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Hücresel Apopitoz Üzerine Tartışma  

InTRoduCTIon 

Each year approximately 10 out of 100,000 people experience 
a subarachnoid hemorrhage (SAH) due to intracranial 
aneurysm rupture (26, 28). Despite the recent developments 
in microsurgical and endovascular surgical techniques, the 
prognosis for patients who suffer a SAH remains unsatisfactory. 
SAH is a complex clinical disease that is often associated with 
many interrelated complications such as cerebral edema, 
obstructive hydrocephalus, diffuse/focal cerebral ischemia or 
infarction (35). 

A common complication of SAH is vasospasm, which is still 
a leading cause of morbidity and mortality in patients with 
ruptured aneurysms that may occur 3-14 days following a 
SAH. Angiographic evidence of vasospasm is seen in up to 70% 
of patients, and 20 to 30% of patient’s manifest neurological 
deficits (14, 24). Vasospasm has been the focus of the majority 
of experimental and clinical research efforts during the past 

number of decades. Several types of treatment strategies such 
as circulatory volume expansion, statins, and magnesium 
sulfate and calcium antagonists have been studied in clinical 
trials to prevent or reverse vasospasm (12, 34, 36, 43). Based on 
the current evidence, only oral nimodipine is recommended 
as a standard treatment in patients with aneurysmal SAH 
(34). However, the reversal of vasospasm does not appear to 
improve outcome alone. 

Delayed ischemic neurological deficits (DIND) due to 
vasospasm are rare within 3 days of SAH. Hence, the major 
causes of death within 72 hours following a SAH are the 
effects of the initial hemorrhage and aneurysmal rebleeding 
(4). A recently described concept early brain injury (EBI) looks 
at overall brain injury after SAH (5-7). Growing evidences have 
suggested that EBI, which occurs during the 24-72 h following 
aneurysm rupture, largely contributes to unfavorable outcome 
(33). In this review, we summarize the current knowledge on 
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the EBI and the apoptotic molecular mechanisms involved in 
the etiology of EBI.

Early Brain Injury

EBI is a term used to explain the pathophysiology that occurs 
within the brain after a SAH within the first 72 hours of the 
ictus. To date, both theoretically and clinically, this area has 
been neglected in favor of vasospasm, which typically occurs 
after the initial 72 hours. In addition, EBI challenges the 
already tenuous link between vasospasm and DIND. Although 
unproven, it can be suggested that EBI is a precursor for both 
DIND and vasospasm, which occur in parallel with each other 
and do not have a cause and effect relationship.

EBI is believed to arise from the significant pathophysiological 
mechanisms, which occur in the brain at the moment of a SAH. 

The initial blood load causes an increase in the intracranial 
pressure (ICP), which has been demonstrated in both human 
and animal models. The quantity of the initial blood load drives 
the degree of the ICP rise. As the pressure rises the cerebral 
perfusion pressure (CPP) falls. The mechanism behind this 
relationship is imprisely understood, although it is believed to 
be related to the Monroe-Kelly hypothesis, furthermore both 
vasoparalysis and cerebrospinal fluid obstruction have also 
been implicated.  The rise in the ICP and subsequent fall in 
the CPP result in a significant drop in the cerebral blood flow, 
which can in experimental studies drop to zero. While this is 
a transitory fall, the consequences are significant in both long 
and short term (Figure 1). These physiological derangements 
result in blood brain barrier dysfunction, inflammation, and 
oxidative cascades that lead to neuronal cell death (2) (Figure 
2).

Figure 1: The figure shows 
overall scheme from SAH 
to global cerebral ischemia.  
Following SAH, ICP rises and 
CPP drops significantly those 
results in decreased CBF.  Global 
cerebral ischemia triggers EBI 
and consecutive vasospasm 
leading to neuronal cell death 
following SAH. CBF, cerebral 
blood flow; CPP, cerebral 
perfusion pressure; CSF, 
cerebral spinal fluid; EBI, early 
brain injury; ICP, intracranial 
pressure; SAH, subarachnoid 
hemorrhage.

Figure 2: A recently 
described concept 
early brain injury looks 
at overall brain injury 
after SAH. The figure 
shows mechanisms and 
molecular pathways 
involved in EBI. 
EBI, early brain injury; 
SAH, subarachnoid 
hemorrhage.
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These events result in a global ischemic injury, which varies 
in severity. Clearly in the most severe form the degree of 
ischemia is prolonged and results in death. This has been seen 
in post mortem studies where necrosis can be demonstrated 
throughout the brain. This occurs in about 30% of patients. 
In the remainder the degree of ischemia is not as severe and 
both apoptosis and to a lesser degree necrosis is evident. In 
grade one patients following a SAH, the degree of injury is 
more subtle and is believed to be limited to apoptosis in more 
sensitive areas of the brain, for example the hippocampus. 
This has been demonstrated in both animal models and in 
patients post mortem (30, 31, 44, 46, 47).

Apoptosis in EBI

Apoptosis is not a new concept, yet the complex and intricately 
interwoven pathways are still being elucidated. In addition, 
it appears that different pathways are important depending 
on the initial insult. For example, it has been shown that the 
caspase dependent cascade may be particularly important in 
relation to ischemia while the caspase independent cascade 
relates more to neurotoxin induced apoptosis (11). There are 
a number of pathways that are believed to be important in 
relation to SAH; these include the death receptor pathway, 
p53, the caspase dependent and independent pathways and 
the mitochondrial pathway (6, 8, 23).

SAH has been referred to as an external stress event which 
through a mechanism that is not fully understood (27) can 
initiate cellular apoptosis (23, 25). Apoptotic cell death may 
be seen in both cortical, subcortical or hippocampal neurons 
and endothelium following SAH. It can be initiated through 
a variety of mechanisms including global ischemia due to 
increased ICP, microcirculatory disturbance, and subarachnoid 
blood toxicity (23). However, intracellular signaling pathways 
that are involved in mediating the apoptosis have not been 
fully investigated. Matrix metalloproteinase-9 (MMP-9), a 
member of endopeptidase family, can mediate apoptosis 
through cleaving main components of the extracellular 
matrix. The activity of MMP-9 and its substrate, laminin, 
are significantly altered in hippocampus following SAH 
in rats (21). Mitogen-activated protein kinases including 
extracellular signal-regulated kinase, c-Jun N-terminal kinase 
(JNK), and p38 were reported to induce apoptosis in the 
brain and cerebral artery after SAH. It has been also shown 
that there is a link between JNK, MMP-9 and caspase-3 
activation following SAH. JNK not only induces a variety of 
proapoptotic proteins, such as c-Jun, p53, bim, and bax, but 
also inhibits anti-apoptotic proteins including Bcl-2 and Bcl-xl 
(40). However, activation of phosphoinositide 3-kinase / Akt 
(protein kinase B) pathway exerts anti-apoptotic properties 
by decreasing activation of proapoptotic caspases (15, 17, 22).

It is believed that the death receptors within the cell membrane 
may be responsible for apoptotic cascade following SAH. 
There are a number of receptors that have been examined 
including Fas, TNFR1 and DR3-5 that may be responsible for 
the translation of the signal across the cell membrane and 
the activation of the TNFR family. In particular, TNF-α and Fas 

have been shown to upregulate after a SAH (44, 45). These 
death receptors have been shown to be capable of activating 
the caspase cascades through a number of mechanisms (16). 
One of the most important mechanisms is the ability of the 
death receptors to stabilize p53 in the cytosol. Additional 
experimental studies examining the effects of pancaspase 
inhibitors have shown a favorable outcome with regard 
to SAH, suggesting that p53 may work through either the 
caspase dependent or mitochondrial pathway in SAH induced 
apoptosis (31, 45).

P53 has been shown to be an orchestrating protein in the 
apoptotic pathways following a SAH (5-7). P53 is stabilized 
in the cytosol, which occurs through phosphorylation and 
occurs in response to any significant stress event including 
SAH (18). Once this occurs p53 activates the mitochondrial 
apoptotic pathway through the Bcl-2 family of proteins, 
which are divided into both pro and anti-apoptotic members 
(19). Therefore, the Bcl-2 family can either stimulate or inhibit 
cytochrome C release from mitochondria depending on the 
dominant signal, i.e. pro or anti-apoptotic dominance (32). 
It is important to realize that apoptosis is not an all or none 
mechanism (38). P53 acting independently of the Bcl-2 family 
can also initiate the caspase cascades through its action on 
procaspase 8, which is cleaved to form caspase 8 which in turn 
cleaves Bid to form truncated Bid (tBid). tBid then permits the 
release of cytochrome C from mitochondria which is further 
regulated by Bcl-2 and Bcl-xL (37). Once released, Cytochrome 
C combines with Apaf-1 to form the apoptosome, which in 
turn recruits and cleaves procaspase 9, thereby activating the 
caspase cascade (29). 

As mentioned, the apoptotic cascades can involve the intrinsic 
or mitochondrial pathway and the extrinsic pathway. The 
subsequent cascade, which the cell embarks upon, appears 
to be regulated, at least in part, by the availability of ATP. The 
mitochondrial pathway is energy dependent and occurs for 
example in the penumbra (3), where energy is still available. 
In ATP depleted areas, the extrinsic pathway, i.e. caspase 8, 
which is capable of self-cleavage, with direct activation of 
caspase 3, occurs. Hippocampal cells are far more prone to 
injury compared to other areas due to their sensitivity to 
ischemia as a result of high ATP requirements (31). Caspase 
8 was also shown to decrease in experimental models of SAH 
induced apoptosis after the prevention of p53 stabilization 
in the cytosol, suggesting that the caspase dependent and 
mitochondrial release of cytochrome C are important in SAH 
(5-7). The importance of the apoptotic cascades has been 
shown to be significant not only within the brain parenchyma 
but also within the cerebral vasculature. It has been shown 
that apoptosis occurs in the endothelial cells of vessels, the 
prevention of which can attenuate the degree of vasospasm 
(45). Apoptosis has been identified in a patient who died from 
a SAH (46). 

Experimental models of stroke and SAH have shown that the 
inhibition of caspases can offer some protection, however 
apoptosis still occurs (31, 42, 45). Therefore, it seems clear 
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that another caspase independent cascade may be involved. 
Apoptosis inducing factor (AIF) has been shown to be released 
from the mitochondria and translocate to the nucleus in 
response to various death signals (9, 10). P53 has been shown 
to trigger the release of AIF in the absence of Apaf-1 resulting 
in a caspase independent apoptotic cascade (9). Interestingly 
in a similar way to cytochrome C, AIF appears to be under the 
control of the Bcl-2 family and in fact the release of both AIF 
and cytochrome C are inhibited if Bcl-2 members are blocked, 
suggesting that the Bcl-2 family may be solely responsible 
for the caspase dependent and independent cascades (9, 
41). The Bcl-2 family is also responsible for the inhibition of 
second mitochondria derived activator of caspase/direct 
IAP binding protein with low pI (Smac/Diablo) (13, 39), yet 
another mitochondrial protein similar to cytochrome C, which 
depresses procaspase-9 through the inhibition of inhibitor of 
apoptosis protein-1. This makes the Bcl-2 family a powerful 
target for future therapeutic intervention.

ConCluSIon

Much progress has been made toward understanding the 
mechanisms of EBI following SAH. As evidenced by the 
number of publications, apoptosis plays a significant role in 
EBI, thereby could be a therapeutic target after SAH. However, 
much more work will be required to fully characterize the 
molecular signaling pathways regulating apoptosis in EBI. 
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