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Targeting Apoptosis Through FOXP1, and N-cadherin with 
Glatiramer Acetate in Chick Embryos During Neural Tube 
Development

ABSTRACT

their childbearing ages of 20 to 45 (20, 34, 35). The issue of 
pregnancy planning in these patients makes treatment tricky. 

Glatiramer acetate (GA), one of the first-line therapies cur-
rently approved for relapsing-remitting multiple sclerosis 
(RRMS) (34), was originally designed as a synthetic analogue 
of myelin basic protein (1). Data about exposure to GA during 
early pregnancy period in humans is limited but animal stud-
ies have revealed no fetal risk to date so GA is classified by 

█    INTRODUCTION
Neural tube (NT) defects are uncommon malformations 
occurring 6 in 10000 pregnancies (60). Congenital malformation 
incidence is 3-5% in newborns and NT defects cause 7% of 
newborn deaths related to congenital malformations (13). 

Multiple Sclerosis (MS), a chronic demyelinating and degen-
erative disease of the central nervous system (CNS), is the 
most common chronic neurologic disability in young adults in 

AIM: To demonstrate the effect of glatiramer acetate (GA) in chick embryos on neural tube (NT) development, and to explore its 
effects of FOXP1, apoptosis, and N-cadherin.   
MATERIAL and METHODS: One hundred fertile, specific pathogen free eggs were divided into 5 groups for this study. The eggshell 
was windowed specifically at 24 hours of incubation. The embryos in Group 1 (n=20) were treated with 10 μl physiological saline; 
in Group 2 the embryos (n=20) were given 10 μl GA (equal to daily human therapeutic dose); 20 μl GA (equal to twice daily human 
therapeutic dose) was injected to embryos in Group 3 (n=20); in Group 4 and 5, 30 μl and 40 μl GA were administered to the 
embryos (n=20) (equal to x3 and x4 daily human therapeutic dose, respectively). Each egg was re-incubated for 24 hours more. 
Then, histological and immunohistochemical evaluation of the subjects were done.     
RESULTS: The embryos with NT defect showed FOXP1 expression without N- cadherin or staining with N-cadherin in another 
location in our study. We interpreted this result as GA leading to an NT closure defect by increasing FOXP expression. Moreover, we 
also showed the reverse relation between FOXP1 and N-cadherin at the immunohistochemical level for the first time.  
CONCLUSION: GA affects the spinal cord development through FOXP in the chick embryo model at high doses.       
KEYWORDS: Chick embryo, Glatiramer acetate, FOXP, N-Cadherin, Spinal cord development
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the United States Food and Drug Administration (FDA) as a 
Category B drug in relation to pregnancy. The manufacturer’s 
post-marketing surveillance about the safety of GA suggested 
no increased risk in terms of spontaneous abortion and other 
outcomes and this was also confirmed by real life data from 
multicentric observational studies (22). GA has been sug-
gested to offer neuroprotection since 2001. We just wondered 
whether this neuroprotective role of GA might have produced 
the drug’s safety profile during neurulation (49)

The clinical effect of GA has long been attributed to a shift in 
the cytokine secretion of CD4+ T helper (Th) cells. Recently, 
its broader immunomodulatory effect on cells of both the 
innate and adaptive immune system has been elucidated. The 
immunomodulatory processes related to GA include binding 
to major histocompatibility complex (MHC) molecules, shifting 
from a Th1 cytokine profile to a Th2-biased anti-inflammatory 
profile, the activation of FOXP3+ regulatory T cells, and the 
inactivation of inflammatory monocytes (2, 7, 17, 47). 

Apoptosis, principally regulated by the Bcl2 family of proteins, 
participates in the morphogenesis and homeostasis of the 
course of central nervous system development (8). Recently, 
the ability to regulate apoptosis and tumorigenesis of the 
subfamily members of the forkhead-box (Fox) family has also 
been reported (30).

FOX family of transcription factors functions as both 
transcriptional activators and repressors in the regulation 
of embryonic development of various organs, including the 
control of cell differentiation, cell cycle regulation, and pattern 
formation (6, 28, 32, 57). 

Among the FOXP subfamily of transcription factors within the 
Fox family (36, 50), FOXP proteins play critical roles in immune 
responses, organ development and cancer pathogenesis.

The switch between E- and N-cadherin has been found to play 
a key role on the effects of FOXP2 and FOXP4 upon neural 
differentiation in the spinal cord during early morphogenesis. 
Increased FOXP expression suppresses the N-cadherin 
expression that plays a key role in the adherens junctions of 

the neuroepithelial cells. Regression of N-cadherin by FOXP 
transcription factors disrupts apical adherens junctions (42, 
46). 

FOXP2 and FOXP4 are highly expressed during spinal cord 
neurogenesis. FOXP1 has been suggested as linking effectors 
of both neuronal migration and axonal projections, but 
there are only a few studies that assess FOXP1 expression 
during spinal cord neurogenesis (19). The knowledge about 
putative functions of FOXP resulting in a spectrum of NT 
defects associated through disordered neuroepithelial tissue 
architecture and GA’s effect on FOXP led us to investigate 
the potential dose-dependent teratogenic effect of GA on the 
spinal cord development in the chick embryo model (46). 

To the best of our knowledge, there is no study in the literature 
about the effects of GA on NT development. The aims of this 
study were to demonstrate the effect of GA in chick embryos 
on NT development and, if present, to explore its effects of 
FOXP1, apoptosis, and N-cadherin. 

█    MATERIAL and METHODS
Chick Embryos

Fertile, specific pathogen free eggs of the domestic fowl 
(Has tavuk®, Gallus gallus, Bursa, Turkey) were used for this 
study. The eggs were incubated at 37.5oC and 75% relative 
humidity for 24 hours until the embryos reached stage six 
of development according to Hamburger and Hamilton (24). 
The eggs at that stage were divided into five equal groups. 
The embryos in Group 1 (n=20) were treated with 10 μl 
physiological saline; in Group 2 the embryos (n=20) were 
given 10 μl GA (equal to daily human therapeutic dose); 20 μl 
GA (equal to twice daily human therapeutic dose) was injected 
to embryos in Group 3 (n=20); in Group 4 and 5, 30 μl and 40 
μl GA were administered to the embryos (n=20) (equal to x3 
and x4 daily human therapeutic dose, respectively) (Table I). 

Method of Injection

At the sixth stage of development, the eggs were washed 

Table I: Statistical Analyses of the Groups

NT Open (%) NT Close (%)
Group 1(n=19)(10μl SF) 0 19 (100)
Group 2(n=20)(10μl GA) 4 (20) 16 (80)
Group 3(n=19)(20μl GA) 7 (36.80) 12 (63.20)
Group 4(n=17)(30μl GA) 7 (41.20) 10 (58.80)
Group 5(n=17)(40μl GA) 6 (35.30) 11 (64.70)

p-value 0.003
Pairwise Comparisons

Gr 1- Gr 2: p=0.106      Gr 2- Gr 3:  p=0.417      Gr 3- Gr 4:  p=1.000    Gr 3- Gr 4:  p=1.000
Gr 1- Gr 3:p=0.008Gr 2- Gr 4:p=0.297       Gr 3- Gr 5:  p=1.000
Gr 1- Gr 4:p=0.002Gr 2- Gr 5:p=0.460
Gr 1- Gr 5:p=0.006
NT: Neural tube, GA: Glatiramer acetate, SF: Physiological saline.
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with 70% alcohol and labeled properly on the outer shell. A 
hole was made on the blunt pole of the eggs with a sharp 
and thick needle. Using a sterile Hamilton® syringe, GA or 
saline was injected from the blunt end under the embryonic 
disc at doses in accordance with the groups. The holes were 
sealed with paraffin, turned upside down and the eggs were 
then placed into an incubator for another 24 hours, reaching 
developmental stage 12. 

Embryo Collection

At the end of the incubation for a total of 48 hours from the 
onset of the experiment, the eggs were cracked open and the 
embryos were transferred to a Petri dish after careful dissection 
of the allantoic stalk from other embryonic structures. All 
chick embryos were evaluated with the stereomicroscope 
and light microscope according to the Hamburger- Hamilton 
classification (24). 

Histological Preparation and Analysis

All the embryos were fixed with 10% buffered formalin 
and examined under the stereomicroscope (Nikon, SZX 
1000) to assess the closure of the NT and presence of NT 
developmental abnormalities, if present. After washing with 
tap water, they were dehydrated through a graded series 
of ethanol. The embryos were incubated in xylene after two 
washes and were transferred into a paraffin-embedded 
mixture. Then 4 μm transverse serial sections were taken 
and stained with Hematoxylin–Eosin (HE) according to its 
routine protocols. Slides were evaluated and photographed 
under light microscopy (Zeiss, Axio Scope A1) by blinded 
histologists.

Immunohistochemistry

Four μm thick tissue sections mounted on poly-lysine coated 
slides were incubated at 60°C overnight. The slides were 
deparaffinized in xylene and rehydrated through graded alcohol 
into water and subjected to antigen retrieval using a microwave 
oven. The tissues were cooled to room temperature. The limits 
of sections were drawn with a pap pen (Invitrogen Corporation, 
CA, USA) and incubated in 3% hydrogen peroxidase for 15 
min to inhibit the endogenous peroxidase activity. The tissues 
then were given three 5-min washes in PBS and incubated 
in blocking solution. Then, sections were incubated for 1 h 
at 37°C with primary antibodies rabbit polyclonal anti-FOXP1 
(1:200, Abcam- ab16645, Boston, USA) and monoclonal anti-
N-Cadherin/A-CAM (1:100, Sigma C 3865, Missouri, USA). 
After washing with PBS, the secondary antibody (SPlink HRP 
Broad DAB Bulk Kit for Mouse and Rabbit Antibodies, GBI 
Labs, Mukilteo, WA, USA) was applied for 30 min followed by 
three washes in PBS. The streptavidin–peroxidase complex 
was added for 30 min and washed with PBS three times. 
Then, slides were incubated in fresh 3, 3’-diaminobenzidine 
(DAB) (GBI Labs, Mukilteo, WA, USA) chromogen for 1-2 min 
(prepared in a ratio of 1:20). The slides were then washed in 
water to remove the excess DAB, dehydrated, cleared, and 
mounted with mounting medium. The presence of a brown 
precipitate indicated positive findings for the primary antibody. 
Serial sections were stained with concurrent counter stain 
hematoxylin for N cadherin. The negative controls received 

the same treatment, with rabbit IgG or mouse IgG instead of 
the primary antibody, with hematoxylin solution. The scoring 
of immunostaining expressions were evaluated as – none, + 
weak, ++ moderate, +++ severe. 

Apoptosis Assay

For the labeling of apoptotic cells, tissue samples, fixed in 
formalin, were embedded in paraffin and sectioned at 4 μm 
thickness. We used a standard terminal deoxynucleotidyl 
transferase (TdT) deoxyuridine triphosphate nick end labeling 
assay (TUNEL) technique to detect the fragmented DNA 
associated with apoptosis. For this purpose, the In Situ Cell 
Death Detection Kit Peroxidase (Roche, Mannheim, Germany) 
was used according to the manufacturer’s instructions. After 
standard deparaffinization, hydration with progressively 
decreasing alcohol concentrations, incubation with proteinase 
K, and blocking of endogenous peroxidase, tissue sections 
were incubated in a humidified chamber; first, with TdT and 
digoxigenin–deoxyuridine triphosphate (TUNEL reaction 
mixture) at 37°C for 60 min; and second, with alkaline 
phosphatase (AP) converter antifluorescein antibody at 37°C 
for 30 min. Color was developed with diaminobenzidine (DAB, 
Sigma, St. Louis, MO, USA) and sections were counterstained 
with Harris hematoxylin. For negative control purpose, some 
slides were incubated with label solution not containing TdT. 
We searched for apoptotic cells showing cell shrinkage with 
condensed nuclei (pyknosis) and nuclear fragmentation 
(karyorrhexis) under light microscopy. Cells containing weakly 
to moderately TUNEL-positive nuclei in the absence of these 
additional morphological features were not assessed as 
apoptotic. The stained specimens were examined in a blinded 
fashion by experienced histologists. 

Statistical Analyses

Categorical variables were represented with frequency and 
related percentage values and compared among groups by 
performing Fisher-Freeman-Halton exact test, Fisher’s exact 
test and chi-square test with Yates correction. SPSS v.21 vas 
used for statistical analysis and statistical significance was set 
at p<0.05 (Table I).

█   RESULTS
In this study, we investigated the effect of GA at different 
dosages on NT development and closure of the neural plaque 
in a chick embryo model. Groups and NT developments were 
summarized in Table II. 

Nineteen of 20 embryos in group I reached the expected 
developmental stage and their NTs were closed. There was 
immaturity in only one embryo in this group (Figure 1A, B). 
There was no FOXP1 immunoreactivity in the NTs of group I 
(Figure 1C). 

N-cadherin immunoreactivity was severely expressed in 
epithelial cells and especially those neighboring the surface 
ectoderm of the NT and moderately expressed in epithelial 
cells neighboring the luminal side in group I (Figure 1D). There 
were a few apoptotic cells in the NT epithelium by TUNEL 
staining in group I (Figure 1E).  



 Turk Neurosurg 26(4): 586-594, 2016 | 589

Taskapilioglu MO. et al: Glatiramer Acetate and Neural Tube Development

staining at the luminal side of the neuroepithelial cells in the 
open NT embryos of the drug treated groups. However, there 
was severe expression for N- cadherin in the middle part of 
the epithelial wall of some embryos (Figure 2E). N-cadherin 
staining in closed NT embryos was consistent within group 
1. A few apoptotic cells were detected with TUNEL staining 
in the NT epithelium and somites of all drug treated groups 
(Figure 2F). 

There was statistical significance according to NT malformation 
between control group and groups 3, 4, 5 (p=0.008, p=0.002, 
and p=0.006, respectively).

Stereomicroscopic evaluation of the drug treated groups, 
namely groups 4, 7, 7, 6 showed an open NT defect. There 
was 1 at group 3, 3 at each of group 4 and 5 immature 
embryos (Figure 2A, B). Light microscopy findings of sections 
from open NT embryos were in line with the stereomicroscopic 
evaluation (Figure 2C). Weak and moderate FOXP1 staining at 
the deep side of the NT epithelium and somites in embryos 
with open NT was detected. There were no concordance 
with the increasing drug dosage and FOXP1 staining (Figure 
2D). However, FOXP1 immunoreactivity was not detected 
in the closed neural plate sites. There was no N- cadherin 

Table II: Stereomicroscopic Examination of the Neural Tube at Different GA Dosages

Neural tube Group I (n=20) Group II (n=20) Group III (n=20) Group IV (n=20) Group V (n=20)
Immature 1 0 1 3 3

Open 0 4 7 7 6
Close 19 16 12 10 11

Figure 1: 
A) Stereomicroscopic 
image of closed NT of 
chick embryo at group 
I; B) Cross section of 
closed NT at group I 
(stain: H-E) (N: neural 
tube, nc: notochord,  
S: Somite); 
C) No FOXP1 
immunoreactivity at 
NT nucleus at group I; 
D) Severe N-cadherin 
immunoreactivity 
[arrow] at adjacent 
cells of NT surface 
ectoderm and 
moderate expression 
at luminal surface 
epithelial cells 
(L: lumen); E) Few 
apoptotic cells at NT 
epithelium with TUNEL 
staining at group I 
[arrow].

A

B C

D E
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apoptotic cell numbers between the GA-treated group with 
NT defect and the control group in our study may be explained 
in the context of the suppression of Foxo-induced apoptosis 
through increased FOXP1. 

NT defects affect about 1 in 1,000 neonates in the United 
States (53). In some chronic diseases like MS, variable con-
centrations of drugs are taken during the patient’s whole life. 
GA has been used widely for the treatment of MS worldwide. 
The limited data on pregnancy and fetal outcomes after in-
utero exposure to GA in patients with MS comes from the 
manufacturer’s post-marketing surveillance. This suggests 
no increased risk in terms of spontaneous abortion and other 
outcomes (21). However, there is no controlled experimental 
study on this subject. 

█    DISCUSSION
Neurulation, the process of formation of the brain and spinal 
cord, includes the formation of the neural plate, and its folding 
into lateral neural folds which then come together to complete 
the fusion of the NT (12). There are many potential causes 
of NT closure defects. Apoptosis is an important mechanism 
in the morphogenesis and homeostasis of the developing 
central nervous system, especially during the formation and 
fusion of the neural folds. Animal models of NT defect have 
shown increased apoptosis in the neuroepithelial cells (25, 
43). There was no difference between the experimental and 
control groups in terms of apoptosis in our study. Van Boxtel 
et al. have recently proposed action of FOXP1 through a 
negative feedback loop to suppress Fox transcription factor 
class O (Foxo)-induced apoptosis (56). The similarity of the 

Figure 2: A) Open NT at hindbrain 
[arrowhead] and caudal [arrow] region 
at group IV; B) Developmental delay 
at group V chick embryo; C) Open NT 
at 48th hour at group IV. (Stain: H-E)            
(N: neural tube, nc: notochord); 
D) Mild FOXP1 expression [arrow] at NT 
epithelium and moderate [arrowhead] 
expression at somites at group III; 
E) N- cadherin expression [arrow] at 
group IV; F) Few apoptotic cells at 
NT epithelium [arrow] and somites 
[arrowhead] with TUNEL staining at 
group III.

A

B

C

E

D
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the ventral spinal cord during mid- to late embryogenesis (40). 
FOXP1 has two opposing functions in different cell types: a 
tumor suppressor in some, and an oncogene in others (3-5, 
31). Its function is possibly through apoptosis in tumorigenesis 
(15, 44).

FOXP2 has also been reported to be expressed in the 
developing spinal cord (14, 50). Morikawa et al suggested that 
FOXP1 and FOXP2 may be involved in the determination of 
the cell type identities during late embryogenesis in 2009 (39). 

FOXP3 was initially identified by severe autoimmune diseases 
associated with its mutations in mouse and human (9, 59), 
and has emerged as a key transcriptional regulator for the 
development and function of regulatory T cells (Treg) (27). 
Because the immune response that characterizes Tregs 
is realized through the action of FOXP3 that can bind 700 
genes and intergenically encode microRNAs, they may 
have opposing effects on different genes, facilitating the 
transcription of some genes while repressing the transcription 
of others. FOXP3-dependent genes mainly have functions in 
immune response, apoptosis, and tumorigenesis. Changes 
or defects in the coding sequence of the FOXP3 gene result 
in the development of different pathological conditions, and 
one of them is the alteration of Tregs functions leading to 
further specific autoimmune disorders (30). Tregs have roles 
in the control of CNS inflammation and activated T cells are 
predominantly regulated by favoring their commitment to 
apoptosis (41).

FOXP4, another member of the FOXP family highly homologous 
to FOXP1, has been shown to dimerize with other FOXP 
proteins. FOXP4 expression and function in T lymphocytes 
have also shown recently (Figure 3) (54, 58).

We chose an old, but still commonly used method, chick 
embryo-model, to investigate the developmental anomalies 
and to show presence of toxicity or neuroprotection of the 
drug. Safety and application of this model to humans was well 
studied in the literature (37, 38, 55). To best of our knowledge, 
this is the first published GA effect study on the chick embryo 
model. Group II had 16 (80%) closed NTs while there were 
10 (50%) and 11 (55%) closed NTs in groups IV and V, 
respectively. This shows close association of NT defect in GA 
with a dose dependent manner.

Of the disease-modifying drugs approved by the FDA, GA is 
an option for female MS patients of childbearing age. GA led 
to a significant increase in the FOXP3 expression of CD4+ T 
cells (33). In GA-treated MS patients, high levels of FOXP3 
correlated with increased T-cell regulation. When mice with 
experimental autoimmune encephalomyelitis (EAE, animal 
model of MS) were treated with GA, development of type II 
monocytes, Th2 differentiation of T cells and expansion of 
Treg were reported. Monocytes isolated from GA-treated mice 
secreted less pro-inflammatory TNF and IL-12, but more anti-
inflammatory IL-10 and transforming growth factor-β (TGFβ), a 
cytokine with key function for the generation of FOXP3+ Treg 
(48). Thus, GA is accepted to normalize the frequency and 
function of Treg in MS (26). Since FOXP is the key regulatory 
gene in the development of regulatory T cells, GA may affect 
spinal cord development through this mechanism (23, 27, 60). 

FOXP1 and FOXP2 are expressed in various tissues, including 
the lung, heart, spleen, and the developing and adult CNS, 
such as the striatum, cerebral cortex, and spinal cord (19, 50-
52). FOXP1 plays an important role in the development of the 
spinal cord (15, 45), and is expressed in some interneurons of 

Figure 3: Diagram that shows the 
possible sequence mechanism of GA 
(56, 60).



592 | Turk Neurosurg 26(4): 586-594, 2016

Taskapilioglu MO. et al: Glatiramer Acetate and Neural Tube Development

The FOXP-based transcriptional mechanism regulating the 
integrity and cytoarchitecture of neuroepithelial progenitors 
was revealed by Rousso et al. (46). They indicated that FOXP2 
and FOXP4 play a crucial role in suppressing the expression of 
N-cadherin. We provided proof for the FOXP1 and N-cadherin 
relationship.

█    CONCLUSION
GA affects spinal cord development through FOXP in the chick 
embryo model at high doses. These results should be further 
explored in additional experimental and clinical studies. 
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