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2-Methoxyestradiol Inhibits Intracerebral Hemorrhage-
Induced Angiogenesis in Rats

ABSTRACT

the treatment of hemorrhagic stroke in the past 10 years, little 
progress has been achieved in ICH treatment.

Angiogenesis, the formation of capillaries from preexisting 
vessels, plays a central role in a variety of physiological and 
pathological conditions (8). During angiogenesis, endothelial 
cells stimulated by angiogenic factors start to proliferate. 

█    INTRODUCTION

Intracerebral hemorrhage (ICH) is a life-threatening catastro-
phe caused by bleeding in the brain parenchyma. Although 
it accounts for only about 15 to 20% of all stroke events, 

ICH has higher mortality and disability rates as compared to 
other types of stroke (7,21). Despite outstanding progress in 

AIM: Angiogenesis occurs after intracerebral hemorrhage (ICH). Hypoxia-inducible factor-1α (HIF-1α) is a critical regulator of 
angiogenesis. However, its role in the central nervous system remains controversial. 2-Methoxyestradiol (2ME2), a natural metabolite 
of estrogen, is known to inhibit HIF-1α. In the present study, we investigated the effect of 2ME2 in a rat model of ICH-induced 
angiogenesis.   
MATERIAL and METHODS: Sprague-Dawley male rats (n=50) were randomly divided into 5 groups: Sham operated group; ICH; 
ICH+2ME2; and ICH+Vehicle groups. ICH model was induced by stereotactic injection of collagenase type VII into the right globus 
pallidus. 2ME2 or vehicle (10% dimethyl sulfoxide) was administered intraperitoneally 10 min after ICH. Angiogenesis and expression 
of HIF-1α was evaluated by immunohistochemistry, quantitative real time-reverse transcription polymerase chain reaction and 
western blot, respectively.    
RESULTS: Proliferating cell nuclear antigen (PCNA)-labeled nuclei were detected in cerebral endothelial cells (ECs) around the 
hematoma. The labeling peaked at 14 days post-ICH. HIF-1α-immunoreactive microvessels with dilated outline were detected in 
the perihematomal tissues. The vessels extended into the clot from the surrounding tissues from day 7 onwards. HIF-1α protein 
levels increased, while no change was observed in HIF-1α mRNA expression after ICH. 2ME2 decreased the PCNA-labeled nuclei 
in cerebral ECs and down-regulated the expression of HIF-1α protein as well, while it had little effect on the mRNA expression of 
HIF-1α.  
CONCLUSION: HIF-1α inhibitor, 2ME2, inhibited post-ICH angiogenesis by suppressing HIF-1α expression, thus exerting 
detrimental effects in ICH.        
KEYWORDS: 2-methoxyestradiol, Intracerebral hemorrhage, Angiogenesis, Hypoxia-inducible factor-1α



242 | Turk Neurosurg 28(2):241-247, 2018

Li HT. et al: 2-Methoxyestradiol Inhibits Angiogenesis 

Hence, cell proliferation markers such as proliferating cell 
nuclear antigen (PCNA), and endothelial cell marker, von 
Willebrand factor (vWF), are frequently used in angiogenesis 
studies (15). The molecular events governing angiogenesis 
are complex and involve multiple families of proteins and 
receptors. Hypoxia-inducible factor-1α (HIF-1α) is one of the 
major transcriptional activators of a set of angiogenic genes 
such as vascular endothelial growth factor (VEGF) (28). In our 
previous studies, we demonstrated ICH-induced angiogenesis 
in rat brains, which was accompanied by up-regulation of HIF-
1α (12,32).

2-Methoxyestradiol (2ME2) is an endogenous metabolite of 
estrogen that is known to inhibit HIF-1α in a dose-dependent 
manner (17). Administration of 2-ME2 has been shown to 
inhibit angiogenesis in both in vivo and in vitro studies (19,34). 
The present study was designed to clarify the effect of 2ME2 
on ICH-related angiogenesis.

█     MATERIAL and METHODS
Animal Preparation

Adult male Sprague–Dawley (SD) rats (weight: 250-300 g each) 
were housed under diurnal lighting conditions. This study 
was carried out in strict compliance to the recommendations 
in the Guide for the Care and Use of Laboratory Animals of 
the National Institutes of Health (NIH Publication No. 85-
23, revised 1996). All experiments were approved by the 
Institutional Animal Care and Use Committee of China Three 
Gorges University.

Induction of Intracerebral Hemorrhage

ICH was induced by collagenase according to the previous 
protocol (18). After anesthetization with chloral hydrate (400 
mg/kg) via intraperitoneal injection, the animals were fixed in a 
prone position on a stereotactic frame (STOELTING Co., USA). 
Following a scalp incision, a small cranial burr was drilled near 
the right coronal suture, 3.2 mm lateral to the midline. Bacterial 
type VII collagenase (0.5 U in 2.5 μL 0.9% sterile saline, Sigma 
Co., USA) was slowly injected into right globus pallidus (1.4 
mm posterior and 3.2 mm lateral to bregma, 5.6 mm ventral 
to the cortical surface) with a 5-μL Hamilton syringe for over 5 
minutes. The needle was left there for another 5 minutes. The 
burr hole was sealed with bone wax, and the wound sutured. 
The animals were placed in a warm box to recover individually. 
In the sham group, the rats were injected with 2.5 μL 0.9% 
sterile saline without collagenase at the same site. During the 
procedure, rectal temperature was monitored and maintained 
at 37.5°C using a feedback controlled heating pad.

Drug Administration

2ME2 (Sigma-Aldrich Corp, MO), an HIF-1α inhibitor, was 
dissolved in PBS with 10% dimethyl sulfoxide (DMSO). 2ME2 
(15 mg/kg, intraperitoneal injection) was administered to rats 
10 minutes after induction of ICH (34). Rats in the DMSO 
treated group were administered the same volume of vehicle 
(DMSO diluted in PBS) at the same time point after induction 
of ICH. No treatment was administered to the ICH alone and 
sham-operated animals.

Neurological Evaluation

The forelimb asymmetry test was performed as described by 
Hua et al.(5). All rats were laid in a transparent cylinder, 20 cm 
in diameter and 30 cm in height. A mirror was placed near 
the cylinder at an angle convenient for observing the forelimb 
movements of the rat; and at the same time, simultaneous 
recording was performed by a video camera. The test lasted 10 
minutes. Rat behavior was quantified by recording the number 
of occasions when the rat’s forelimb touched the cylinder wall 
while it was in an orthostatic position with a balanced centre 
of gravity. The occasions of contact with the unimpaired 
(ipsilateral) forelimb were recorded as I, that with the impaired 
forelimb (contralateral to the collagenase injection site) as 
C, and movement of both forelimbs was recorded as B. The 
forelimb asymmetric use rate (AUR) was calculated using the 
following formula:

AUR = [I/(I+C+B)]-[C/(I+C+B)]. The result was evaluated by a 
researcher who was blinded to the experimental design.

Specimen Preparation

Randomly chosen animals from the groups were deeply 
anesthetized with chloral hydrate (800 mg/kg). For 
immunohistochemistry, animals (n=5 per time point) were 
transcardially perfused with 0.9% saline followed by 250 mL 
ice-cold 4% paraformaldehyde in 0.1 M phosphate buffer 
(PB, pH=7.4). The excised brains were post-fixed in the same 
fixative for 2 hours, and subsequently transferred to 20% and 
then 30% sucrose in 0.1 M PB (pH=7.4) sequentially at 4°C 
until sinking. Coronal sections of brain (30-μm thick) were 
prepared at -20°C with a cryostat (CM1900, Leica, Germany), 
some of which were collected in 0.01 M phosphate-buffered 
saline (pH=7.4) and stored at 4°C. For reverse transcription-
polymerase chain reaction (RT-PCR) and western blot, rats 
(n=10 per time point) were transcardially perfused with 0.9% 
saline. The brains were immediately removed, and the tissues 
in striatum adjacent to the hematoma were dissected and 
frozen at -196°C in liquid nitrogen.

Immunohistochemistry

Under deep anesthesia with chloral hydrate (800 mg/kg), the 
collagenase-induced ICH animals (n=5, per time point) were 
randomly chosen at days 3, 7, and 14 post-operation, and 
were transcardially perfused with 0.9% saline followed by 250 
mL ice-cold 4% paraformaldehyde in 0.1 M phosphate buffer 
(pH=7.4). The brains were removed and post-fixed in the same 
fixative for 2 hours, then transferred to 20% and 30% sucrose 
in 0.1 M phosphate buffer (pH=7.4), sequentially, at 4°C until 
sinking. Coronal sections of brain (30 μm) were prepared at 
-20 °C with a cryostat (CM1900, Leica Co., Germany) for 
immunohistochemical staining. 

Proliferation of Cerebral Microvascular Endothelial Cells

Sections were pretreated to denature DNA as described 
below. After being immersed in 50% formamide /2× saline-
sodium citrate buffer (SSC, pH=7) at 65°C for 2 hours, sections 
were washed with 2× SSC for 10 minutes, followed by their 
incubation in 2 N HCl at 37°C for 30 minutes. The nonspecific 
antigen was blocked by 5% bovine serum albumin (BSA, 
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Sigma, USA) and sections were incubated overnight with a 
mouse anti-PCNA (1:250, Santa Cruz Biotech, USA) at 4°C. 
The biotinylated anti-mouse IgG (1:200, Vector Laboratories, 
USA) was used for 1 hour at 37°C, and then treated with avidin-
biotin-peroxidase complex (ABC) (1:100, Vector Laboratories, 
USA) at 37°C for 1 hour. Immunoreactivity was assessed with 
3,3’- diaminobenzidine (DAB, BosterBiotech, China). 

To detect the proliferated cerebral microvascular ECs, we 
adopted the double immunolabeling method. The procedure 
in the above protocol was followed after DNA denaturation, 
but the primary antibody was changed to rabbit anti-vWF 
(1:400, Chemicon International, USA), which was used to label 
cerebral ECs. The visualization was enhanced with ammonium 
nickel sulfate. The slides were observed at 40× objective 
magnification and the nuclei with PCNA+/vWF+ close to the 
hematoma were counted (four 250×250 μm areas) in randomly 
selected 5 sections for each animal. The data were analyzed 
by Motic Images Advance 3.2 image analysis software, and 
the results are presented as number of nuclei per mm2 (N/
mm2). The result was evaluated by a researcher who was 
blinded to the experimental design.

Spatial Profile of HIF-1α after ICH

Immunohistochemical examination was performed to observe 
spatial profiles of HIF-1α. Briefly, sections were brought to 
room temperature and incubated in 3% H2O2 for 15 minutes. 
After washing 3 times in phosphate-buffered saline for 5 
minutes each, nonspecific binding was blocked in 5% bovine 
serum albumin (Sigma Aldrich Co.) at 37°C for 1 hour. Sections 
were incubated with mouse anti-HIF-1α (1:200, Santa Cruz 
Biotech), with a biotinylated anti-mouse immunoglobulin 
G (1:200) for 1 hour, and then with avidin-biotin-peroxidase 
complex (1:100, Vector Laboratories) at 37°C for 1 hour. 
Immunoreactivity was visualized with diaminobenzidine (DAB, 
Boster Biotech Co.).

Immunofluorescence double labeling was used to detect 
the expression of HIF-1α in ECs. The sections were first 
incubated for 48 hours at 4°C with a mixture of two primary 
antibodies against vWF (1:200) and HIF-1α (1:100). The 
following secondary antibodies were used: Fluorescein 
isothiocyanate-conjugated donkey anti-rabbit antibody (1:50, 
Santa Cruz Biotechnology) for vWF detection; rhodamine-
conjugated donkey anti-mouse antibody (1:100, Santa Cruz 
Biotechnology) for HIF-1α. These sections were scanned 
using a laser scanning confocal microscope (LSM-510, Zeiss, 
Germany). 

For the negative control, 1% BSA was used instead of the 
primary antibody in each experiment.

Quantitative Real-Time RT-PCR

Total RNA was purified from 100 mg tissue near the 
hematoma in all groups using TRIZOL reagent (Invitrogen, 
Carlsbad, California). The integrity of total RNA was assessed 
on agarose gel electrophoresis; the purity and concentration 
were detected by a spectrophotometer (UV-1201, Shimadzu). 
Reverse transcription was performed on 2 μg of total RNA using 
1 μg/μL oligo (dT) 18 (1 μL), 10 mM dNTP Mix (2 μL), RNase 

inhibitor (1 μL) and 200 U/μL M-Mulv-Reverse Transcriptase (1 
μL) at 70°C for 5 minutes, at 37°C for 5 minutes, 42°C for 60 
minutes and 70°C for 10 minutes following the manufacturer’s 
instructions (Fermentas, CA, USA). cDNA was stored at 
-20°C. PCR amplification was performed using SYBR Premix 
ExTaq™ PCR kit (4 μL of 1:2 cDNA dilution was used, Takara 
Biotechnology, Japan) in a LightCycler Real-Time Detection 
System (Roche Diagnostics Limited, Germany). The following 
thermocycling protocol was used: 10 seconds at 95°C; 30 
cycles of 5 seconds at 95°C, 20 seconds at 52°C , and 10 
seconds at 72°C; and a melting curve at 60°C. Primers for 
HIF-1α and β-actin were designed with Primer Premier 5.0 
software for rat (PRIMER Biosoft International, CA, USA) as 
follows:

HIF-1α, sense 5 were designed with Primer Premier 5.0 
software for rat (PRIMER Biosoft Inter β-actin, sense5’- 
CGTTGACATCCGTAAAGAC -3’ and antisense 5’- 
TGGAAGGTGGACAGTGAG -3’.

Melting curves of all samples were prepared as controls to 
test specificity. All gene expression data were calculated by 
2−ΔΔCT, which indicates an n-fold change in gene expression 
relative to the sham control sample (11).

Western Blot

Protein was extracted from the striatal tissues adjacent to 
the hematoma. Western blot analysis was performed (23). 
Briefly, 50-μg proteins were separated by sodium dodecyl 
sulfate polyacrylamide gel electrophoresis and transferred 
to a Hybond-C pure nitrocellulose membrane (Amersham). 
Monoclonal mouse antibodies for HIF-1α (1:100) and β-actin 
(1:200, Santa Cruz Biotech, CA, USA) were used. Quantitative 
densitometric analysis of Western blots was performed with a 
computerized digital image analysis system.

Statistical Analysis

All data are expressed as mean ± standard deviation (SD). 
One-way Analysis of Variance (ANOVA) was used to compare 
between-group the differences. P value less than 0.05 was 
considered statistically significant.

█    RESULTS
Neurological Evaluation

The AUR for all the groups are shown in Figure 1A, B. No 
neurological deficit was observed in the sham operated rats. 
After ICH, the rats were observed for neurological deficit: the 
AUR gradually decreased as the observation time progressed 
(Figure 1A, p<0.01). After 2ME2 treatment, the AUR values 
notably increased from 7 days as compared to those in the 
ICH+DMSO groups (Figure 1B, p<0.05).

Angiogenesis Following ICH 

After ICH, some PCNA-positive cells in von Willebrand factor 
(vWF) - immunoreactive dilated vessels were detected around 
the clot (Figure 2A, B), and the PCNA+/vWF+ nuclei increased 
notably over time (Figure 2C, p<0.05). After 2ME2 treatment, 
the number of PCNA+/vWF+ nuclei was decreased significantly 
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HIF-1α mRNA and Protein Analysis

No signals of HIF-1α mRNA and protein were detected in the 
sham-operated rats. After ICH induction, the HIF-1α protein 
levels increased markedly at 3 days, and then declined. 
However, HIF-1α mRNA levels were unchanged. The levels of 
HIF-1 protein in the 2ME2+ICH group were significantly lower 
than those in the ICH+DMSO groups (p<0.05). However, 2ME2 
had little effect on the expression of HIF-1α mRNA (Figure 4A, 
B).

as compared to that in the ICH+DMSO groups (Figure 2D, 
p<0.05). 

Spatial Distribution of HIF-1α after ICH

The immunohistochemical staining of HIF-1α is shown in Figure 
3. In the sham-operated animals, few HIF-1α-positive vessels 
were observed (Figure 3A). However, some HIF-1α-positive 
dilated vessels were detected mainly in the perihematomal 
tissue, and these positive vessels extended into the clot from 
7 days after ICH (Figure 3B). Furthermore, immunofluorescent 
double labeling confirmed that HIF-1α was localized to vWF+ 
vessels around the hematoma (Figure 3C-E).

Figure 1: Neurological 
evaluation.
Behavioral tests were 
implemented in rats after 
ICH or sham operation. 
The ICH group was 
distinctly worse impaired 
as compared to the sham 
group at the corresponding 
time points. The AUR 
values of the ICH+2ME2 
group were significantly 
higher than that of 
ICH+DMSO group from 7 
days post ICH. (*p<0.05, 
**p<0.01, n=10).

Figure 2: Proliferated 
cerebral endothelial cells 
after ICH.
Post-ICH induction, 
some PCNA-positive 
cells (brown, arrow) in 
vWF-immunoreactive 
dilated vessels (blue) 
were detected around 
the hematoma (A, B); 
the PCNA+/vWF+ nuclei 
increased up till 14 days 
(C); 2ME2 markedly 
increased the expression 
levels of PCNA-positive 
cells in the vWF-
immunoreactive vessels 
(D).
* p<0.05, ** P<0.01. Scale 
bar, 50 μm for panel A, 25 
μm for panel B.
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Figure 4: Quantitative 
analysis of HIF-1α mRNA 
and protein after ICH.
After induction of ICH, HIF-
1α mRNA levels did not 
change at any time-point in 
all groups (A), while the HIF-
1α protein level increased at 
3 days followed by a decline. 
2ME2 strikingly down-
regulated the HIF-1α protein 
expression (B). *p<0.05, 
**P<0.01.

Figure 3: 
Immunohistochemical 
examination for detection of 
HIF-1α.
HIF-1α positive signals 
were hardly observed in the 
brains of sham-operated 
animals (A). After ICH, 
HIF-1α immunoreactive 
microvessels with the dilated 
outline were detected in the 
perihematomal tissues (B). 
Immunofluorescent double 
labeling showed that HIF-
1α (red) was localized in 
vWF+ (green) vessels after 
ICH (C-E). Scale bar, 50 μm 
for panels A-B, 100 μm for 
panels C-E. 

A B
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█    CONCLUSION
We demonstrate for the first time that the HIF-1α inhibitor, 
2ME2 impaired post-ICH angiogenesis and functional 
recovery. These findings indicate that HIF-1α may have a 
protective effect against ICH-induced damage. However, 
further investigations are essential to elucidate the precise 
mechanisms of HIF-1α action before proposing it as a 
neuroprotective target for the treatment of ICH.
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