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ABSTRACT 

AIm: Glutamate is known to be neurotoxic at concentrations of 10-6M and 10-7M. Angiotensin converting enzyme (ACE) inhibitors can be 
assumed to be neuroprotective as they open the mitochondrial adenosine triphosphate-sensitive potassium channels by inhibiting the 
degradation of bradykinin. In this study, we investigated whether the ACE inhibitors captopril, ramipril and perindopril have protective effects 
in glutamate-induced neurotoxicity in newborn rat cerebral cortex cell cultures. 

mAterIAl and methOds: Viability tests were performed among ACE inhibitors by constituting groups of control and 10-7M and 10-6M 
glutamate doses in newborn rat cortex cultures.     

results: While the mean viable cell number was 0.47±0.06 in the control group, it was 0.37±0.03 in the group exposed to 10-7M glutamate 
(p<0.05) and 0.37±0.01 in the group exposed to 10-6M glutamate (p<0.05). Captopril was used at a dose of 10 µM, perindopril was used at a 
dose of 1 µM, and ramipril was used at a dose of 30 µM against 10-7M and 10-6M glutamate. Ramipril and perindopril reversed the toxicity 
against 10-6M glutamate (p<0.05). The neuroprotective properties of captopril, perindopril and ramipril were not found to be statistically 
significant against 10-7M glutamate at the doses mentioned above.  

COnClusIOn: Data obtained from this study indicate that ramipril and perindopril can prevent 10-6M glutamate-induced neurotoxicity.      
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ÖZ 

AmAÇ: Glutamatın 10-6M ve 10-7M konsantrasyonlarında nörotoksik olduğu bilinmektedir. ACE inhibitörleri, bradikinin yıkımını engelleyerek 
mitokondriyal adenozin trifosfat duyarlı potasyum kanallarını açtığından dolayı nöroprotektif olabileceği düşünülebilir. Bu çalışmada, 
Anjiotensin dönüştürücü enzim inhibitörleri olan kaptopril, ramipril ve perindoprilin yenidoğan sıçan beyin hücre kültürlerinde, glutamatla 
oluşturulan nörotoksik hasarda koruyucu etkilerinin olup olmadığını araştırdık. 

yÖntem ve GereÇ: Yenidoğan sıçan korteks kültürlerinde kontrol grupları ve 10-7M ve 10-6M glutamat dozlarında gruplar oluşturularak ACE 
inhibitörlerinin arasında hücre kültürlerinde canlılık testleri yapıldı.      

BulGulAr: Canlı hücre ortalamaları kontrol grubunda 0,47±0,06 iken 10-7M glutamata maruz kalan grupta 0,37±0,03 (p<0,05), 10-6M 
glutamata maruz bırakılan grupta 0,37±0,01 idi (p<0,05). 10-7M ve 10-6M glutamata karşı kaptopril 10 µM, perindopril 1 µM ve ramipril 30 
µM dozlarında kullanıldı. 10-6M glutamata karşı ramipril ve perindopril toksisiteyi geri çevirdi (p<0,05). 10-7M glutamata karşı yukarıdaki 
dozlardaki kaptopril, perindopril ve ramiprilin nöroprotektif özelliği istatistiksel olarak anlamlı değildi.   

sOnuÇ: Bu çalışmadan elde edilen veriler, 10-6M glutamatın oluşturduğu nörotoksisiteyi ramipril ve perindoprilin engelleyebileceğini ortaya 
koydu.      
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InTRoduCTIon

While glutamate is the most important neurotransmitter of the 
brain, it is also toxic. Alterations in glutamate concentration 
lead to neurotoxicity and thereby cell death. Occurance of 
the injury and its outcomes are frequently permanent and 
irreversible as cell death in brain is irreversible (10, 11, 17). ACE 
inhibitors are frequently used in the treatment of essential 
hypertension that lead to impairment, especially in the 
cerebral circulation. ACE inhibitors are assumed to prolong 
the neuronal lifetime due to their free radical collecting effect 
(16, 27). ACE inhibitors pass the blood-brain barrier very 
easily and can modulate the central neurotransmitter level. 
However, very little is known about the relationship between 
ACE inhibition and neuroprotection (18, 27). Excessive 
release of glutamate, which is an excitatory aminoacid, is 
held responsible for the neurotoxicity in the development of 
brain ischemic injury (6). Intracellular calcium increases with 
activation of excitatory aminoacid receptors and this leads 
to impairment of mitochondrial functions via activation of 
protein kinase, phospholipase, protease, nitric oxide synthase 
and release of free radicals (28).The role of free radicals induced 
with activation of excitatory aminoacid receptors in cell death 
is still a wide field of interest. ACE inhibitors can exhibit a 
neuroprotective effect due to the radical collecting effect (26). 
In this study, the neuroprotective effect of ACE inhibitors was 
investigated in glutamate neurotoxicity generated in primary 
cell cultures made from newborn rat cortex.

MATERIAL and METHodS

This study was conducted at the Medical Experimental 
Research Center, Ataturk University. The Ethical Committee 
of Ataturk University approved the study protocol. All 
procedures were performed in accordance with the National 
Institute of Health Principles of Laboratory Animal Care. A 
total of three newborn Sprague-Dawley rats were used in 
the study. The rats were decapitated by making a cervical 
fracture in the cervical midline and the cerebral cortex was 
dissected and removed. The cerebral cortex was placed into 5 
ml of Hank’s balanced salt solution (HBSS; Sigma Co., St Louis, 
MO, USA ), which had already been placed in a sterile petri 
dish and macromerotomy was performed with two lancets. 
This composition was pulled into a syringe and treated at 
37°C for 25-30 min as 5 ml HBSS + 2 ml Trypsin-EDTA (% 0.25 
trypsin- % 0.02 EDTA; Biol. Ind. Haemek, Israel) and chemical 
decomposition was achieved. 8,5-9 microliters of DNAse type 
1 (120u/ml, Sigma, St Louis, USA) was added to this solution 
and treated for 1-2 minutes, and centrifuged at 800rpm for 
3 min. After having thrown away the supernatant, 31,5 ml of 
Neurobasal Medium (NBM) and 3,5 ml fetal calf serum (FCS, 
Biol, Ind.) were added to the residue. The single cell which 
was obtained after physical and chemical decomposition was 
divided into 3,5 ml samples in each of 10 flasks coated with 
poly-D-lysine formerly dissolved in phosphate buffer solution 
(PBS). The flasks were left in the incubator including 5% CO2 
at 37°C in the ventile position. The flasks were then changed 
with a fresh medium of half of their volumes every 3 days until 

the cells were branched and had reached a certain maturity 
and in vitro neurotoxicity experiments were performed 8 
days later (7). Each experimental group was tested in at least 
4 culture medium (n=5). The drugs that were to be used for 
the test were administered into the flask 16 hours prior to the 
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide, a yellow tetrazole) analysis and the flasks were 
placed into the incubator again. Poly D-lysine coating was not 
required as the 24-48 flasks had already been coated (10). Poly 
D-lysine (25 mg/total) was obtained as trypsin-EDTA (100 ml 
0.25%), fetal calf serum 100 ml. 9,8 gr of HBSS was used for 
every 1 liter of water. The solution was stored in the dark at 
2-8°C. This solution was controlled in terms of pH alteration, 
precipitations and participations, blurring, change of color 
and infections prior to every use. Attempts at saving the 
cultures were made by adding 100,000 U/ml of penicillin, 10 
mg/ml of streptomycin and 0.025 mg/ml of amphotericin B, 
which are the recommended antibiotic prophylaxis, to the 
flasks on the first day (10, 12). The cells lived for 5-10 days 
in the cultures in which germination was observed in the 
single cell suspension. Captopril, ramipril and perindopril 
were administered in doses of 10, 30 and 1 micromolar, 
respectively, with the same doses used in cell cultures (20, 24, 
31). In this study, glutamate was used in two distinct doses as 
concentrations of 10-6 and 10-7M .We waited for half an hour 
after administration of the ACE inhibitor and glutamate was 
added to the cultures at the aforementioned doses. The MTT 
kit was used in order to differentiate dead cells after having 
waited for 16 hours. Cell evaluation was made spectrally with 
the Microquant reader at 570 nm wavelength.

SPSS 13.0 (Statistical Package Program for Social Sciences 
version 13.0) for Windows was used for the statistical 
analysis. The mean viability values ± standard deviations 
were calculated by spectrally counting the viable cells in the 
Microquant reader utilizing the MTT kit and the obtained 
numerical values were assessed using the Oneway ANOVA 
test. A P value of <0.05 was accepted as statistically significant 
in the intergroup relationships.

RESuLTS

It was observed that there was a difference between the control 
groups and the glutamate-administered groups in terms of 
viability when the newborn rat cerebral cortex cultures were 
exposed to glutamate. While the mean number of viable 
cells in the control group was 0.47±0.06, it was 0.37±0.03 
in the group exposed to 10-7M glutamate and 0.37±0.01 in 
the group exposed to 10-6M glutamate (p<0.05). Captopril, 
perindopril and ramipril were used at doses of 10 µM, 1 µM 
and 30 µM, respectively, against 10-7M and 10-6M glutamate. 
10-7M and 10-6M glutamate doses seemed to be neurotoxic. 
The neuroprotective effect was not found to be statistically 
significant in case of use of captopril, perindopril and ramipril 
alone compared to the control (Table I) (p<0.05). The mean 
viability value against 10-6M glutamate was 0.52±0.06 for 
ramipril and 0,48±0.07 for perindopril and reversed toxicity 
(Table II) (p<0.05). The neuroprotective properties of captopril, 
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perindopril and ramipril were not statistically significant at 
the aforementioned doses against 10-7M glutamate. 10-6M 
and 10-7M glutamate concentrations were found to produce 
equal toxic doses. Perindopril was found to be most effective 
at a dose of 1 µM in 10-7M glutamate concentration; however, 
this was not statistically significant (Table III).

dISCuSSIon

In this study, the neurotoxic effect of glutamate generated 
in the newborn rat cerebral cortex cells at certain doses and 
the ability of captopril, perindopril and ramipril to reverse 
this toxic effect were investigated. This study was designed 
with the hypothesis that different drug subgroups of ACE 
inhibitors could exhibit different properties. These 3 ACE 
inhibitors were used in the study: captopril which contains a 
sulphydryl group and ramipril and perindopril which do not 
contain sulphydryl groups.

The mean of the viable cells exposed to glutamate at toxic dose 
(10-6M) was tested as 0.52±0.06 in the ramipril-administered 

group and 0,48±0.07 in the perindopril-administered group, 
which reversed toxicity, and a statistically significance was 
obtained. The lack of statistical significance in the captopril-
administered group despite reversal of toxicity makes us 
think that the chemical structures of ACE inhibitors are not 
sufficient alone in producing a neuroprotective effect. While 
some ACE inhibitors exhibited a neuroprotective effect at 
the 10-6M glutamate dose, they were found not to exhibit 
a neuroprotective effect at the other neurotoxic dose (10-
7M glutamate). Here, glutamate transporters that prevent 
toxicity at high glutamate doses are considered to work faster. 
This effect against the concentration in which glutamate 
caused neurotoxicity was investigated in order to assess the 
statistically significant results of ACE inhibitors. According to 
our data obtained from the test results, the differences had 
appeared in terms of viability between the control groups 
and the glutamate-administered groups when the newborn 
rat cortex cultures were exposed to glutamate. Similar to 
previous studies, glutamate concentrations of 10-7M and10-

Table I: Neurotoxic Effects of Administered Drugs in Neuron Cell Cultures 

n ( total number of wells in 2 
distinct studies) Mean of viable cells p value according to control

10-6 Glutamate n=4 0,37±0.01 0.035*
10-7 Glutamate n=5 0,37±0.03 0.018*
10 µM captopril n=5 0,46±0.05 0.74
1 µM perindopril n=5 0,44±0.06 0.48
30 µM ramipril n=4 0,46±0.03 0.77
ConTRoL n=21 0,47±0.06

*p<0.05 was considered significant according to the control group.

Table II: Effects of Captopril, Perindopril and Ramipril on Neuronal Cell Death at 10-6M Glutamate Concentration 

n ( total number of wells in 
2 distinct studies) Mean of viable cells p values according to 

10-6M Glutamate 

10-6 Glutamate +10 µM captopril n=5 0,47±0.11 0.10
10-6 Glutamate+1 µM perindopril n=6 0,48±0.07 0.045*
10-6 Glutamate +30 µM ramipril n=4 0,52±0.06 0.027*
10-6 Glutamate n=4 0,37±0.01

* p<0.05 was considered significant according to the 10-6M glutamate group

Table III: Effects of Captopril, Perindopril and Ramipril on Neuronal Cell Death at 10-7M Glutamate Concentration 

n ( total number of wells in 
2 distinct studies) Mean of viable cells p values accordin to 

10-7M Glutamate 

10-7 Glutamate +10 µM kaptopril n=5 0,45±0.09 0.11
10-7 Glutamate +1 µM perindopril n=5 0,40±0.03 0.62
10-7 Glutamate +30 µM Ramipril n=4 0,43±0.11 0.52
10-7 Glutamate n=5 0,37±0.03

* p<0.05 was considered significant according to the 10-7M glutamate group.
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brain edema by breaking the blood-brain barrier, migration 
of inflammatory cells to ischemic region and alterations in 
blood flow. Hydroxyl radical and superoxide ions which are 
free oxygen radicals, are reactive and injure the nucleic acids, 
lipids, carbohydrates and proteins in neurons by binding 
to them (4). ACE inhibitors have been shown to exhibit a 
neuroprotective effect by reducing the major oxidative stress 
indicators (ie. lipid peroxidation and protein oxidation) (3, 
21, 26, 32). Rats in which NADPH oxidase was deleted were 
found to be resistant to ischemic brain injury (4). Oxidative 
stress emerging in cerebral ischemia causes local ACE 
and angiotensin II production. Angiotensin II induces the 
formation of superoxide by increasing the vascular NADPH 
oxidase. As a result, the NO level decreases, and the oxidative 
stress increases (8, 14). ACE inhibitors may reduce the 
harmful effects of free radicals by exhibiting an antioxidant 
effect (by reducing the angiotensin II and NADPH oxidase). 
ACE inhibitors are kininase-II inhibitors and prevent the 
degradation of bradykinin, which is a vasodilator peptide (23). 
Bradykinin has been reported to exhibit a directly protective 
effect from glutamate neurotoxicity via the bradykinin-B 
receptor in retinal neuron cultures (9). ACE inhibitors 
prevent angiotension-1 from converting to angiotensin-2. 
Reduced angiotensin-2 levels show their protective effect 
by decreasing the superoxide anion production in vessels 
(9). The neuroprotective effect of bradykinin in glutamate 
excitotoxicty has been demonstrated in retinal neuron cells 
by opening the mitochonrial adenosine triphosphate (ATP)-
sensitive potassium channels (Mit K (ATP)) . Glutamate is 
thought to be induced and the superoxides are thought 
to be inhibited by the opening of Mit K(ATP) channels (30). 
ACE inhibitors may have helped in opening the Mit K(ATP) 
channels by preventing bradykinin degradation via inhibition 
of kininase-II and in exhibiting a neuroprotective effect in 
glutamate neurotoxicity by reducing the glutamate-induced 
superoxide radicals. 

In conclusion, we consider that ACE inhibitors can exhibit 
a neuroprotective effect in glutamate neurotoxicity by 
increasing the endogenous antioxidant defence mechanisms 
or by reducing the free radicals.
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