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Correlation of Transfontanel Ultrasonography and                
Brain Magnetic Resonance Imaging Measurements in 
Neonates with Hydrocephalus

ABSTRACT

AIM: To evaluate whether transfontanel ultrasonography could serve as a practical and less complex alternative to brain magnetic 
resonance imaging in infants with hydrocephalus.   
MATERIAL and METHODS: In this prospective study, 54 infants diagnosed with hydrocephalus underwent both transfontanel 
ultrasonography and brain magnetic resonance imaging. A neonatologist and a radiologist independently assessed ventricular 
measurements, including the Evans index, frontooccipital horn ratio, bilateral ventricular index, anterior horn width, thalamooccipital 
distance, callosal angle, and corpus callosum length.
RESULTS: Among the 54 infants, 48 (88.9%) received a ventriculoperitoneal shunt. A strong correlation was found between 
transfontanel ultrasonography and magnetic resonance imaging for most ventricular measurements: Evans index (r=0.875, 
p=0.0001), frontooccipital horn ratio (r=0.867, p=0.0001), callosal angle (r=0.868, p=0.0001), bilateral ventricular index (left 
r=0.937, right r=0.944; p=0.0001 for both), bilateral anterior horn width (left r=0.918, right r=0.908; p=0.0001 for both), and bilateral 
thalamooccipital distance (left r=0.956, right r=0.919; p=0.0001 for both). The correlation for corpus callosum length was statistically 
significant but weaker (r=0.386, p=0.004).
CONCLUSION: Our study emphasizes that transfontanel ultrasonography—which achieves better results in experienced hands—
should be widespread and an excellent alternative to unnecessary and repeated imaging methods.
KEYWORDS: Hydrocephalus, Magnetic resonance imaging, Transfontanel ultrasonography, Infant, Neuroimaging

ABBREVIATIONS: AHW: Anterior horn width, CA: Callosal angle, CT: Computed tomography, EVD: External ventricular drain, 
FOHR: Frontal occipital horn ratio, MRI: Magnetic resonance imaging, TFUS: Transfontanel ultrasonography, TOD: Thalamooccipital 
distance, USG: Ultrasonography, VI: Ventricular index, VPS: Ventriculoperitoneal shunt
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█   INTRODUCTION

Hydrocephalus results from obstruction, impaired ab-
sorption, or overproduction of the cerebrospinal fluid 
pathways due to several developmental, genetic, and 

inherited abnormalities. It can damage the neurodevelopmen-
tal outcome of affected newborns (13,31). Its incidence rang-
es from 0.3 to 2.5 per 1,000 live births, and it is one of the 
most common congenital anomalies of the nervous system 
(13). Hydrocephalus in infants can be congenital or acquired, 
with congenital forms being either syndromic—involving con-
ditions such as neural tube defects, craniosynostosis, and 
X-linked inheritance—or nonsyndromic (31). 

Measuring ventricular size is essential in pediatric patients with 
hydrocephalus because the severity of ventricular dilatation is 
related to an enhanced risk of adverse neurodevelopmental 
outcomes in fetuses with isolated ventriculomegaly (7). In the 
diagnosis and treatment of newborns, ultrasonography (USG), 
computed tomography (CT), or magnetic resonance imaging 
(MRI) are frequently carried out. Transfontanel ultrasonogra-
phy (TFUS) is a highly effective, cost-effective, and noninva-
sive diagnostic tool for rapidly evaluating the anatomy of the 
infant’s brain and detecting normal and abnormal findings in 
detail (23). It also has limitations in assessing complex mal-
formations, vascular pathologies, and obstetric trauma, de-
tecting small parenchymal pathologies and cerebral infarction, 
and evaluating white matter injury. TFUS enables evaluating 
supratentorial structures in more detail, whereas the evalua-
tion of infratentorial structures is relatively restricted (11). Defi-
nitions have been determined according to the measurements 
of the ventricles (3), and studies comparing MRI/CT with USG 
measurements are minimal. 

With the development of technology and the diversification 
of imaging methods for hydrocephalus and ventriculomegaly, 
diagnosis and post-treatment follow-up can be performed 
with a large number of linear measurements. Reference 
values for ventricular index (VI), anterior horn width (AHW), 
and thalamooccipital distance (TOD) have been established 
for neonatal lateral ventricles, which might enable the early 
identification of posthemorrhagic ventricular dilatation and 
the accurate timing of interventions in infants with ventricular 
dilatation (3). USG-derived frontal occipital horn (FOHR) 
and frontal temporal horn are reliable indices for clinically 
monitoring infantile ventriculomegaly in infants younger than 
six months (25). It is a valuable tool for following pediatric 
hydrocephalus patients (24). In the last decade, studies 
have shown that callosal angle (CA) measurement correlates 
with the Evans index, which has been used for years in the 
diagnosis of ventriculomegaly and hydrocephalus in both 
adult and pediatric patients (17,32). With the expansion of 
the lateral ventricles, the corpus callosum primarily exhibits 
elevation of its body and—to a lesser extent—an increase in 
length (15).

This study aims to compare linear USG with MRI measurements 
in hydrocephalus because USG can be used at the bedside 
and has no radiation risk. Moreover, it seeks to ascertain 
whether USG can be utilized as a more straightforward 
imaging method in hydrocephalic infants.

█   MATERIAL and METHODS
Participants

This study was conducted in line with the principles of the 
Declaration of Helsinki. After obtaining approval from the 
Yuzuncu Yil University Clinical Research Ethics Committee 
(Decision no: 15/11/2023-05), 60 newborn infants with hydro-
cephalus who were admitted to the neonatal intensive care 
unit of our hospital in 2023–2024 were included in the study. 
Demographic features (sex, gestational age, birth weight, 
type of delivery, consanguineous marriage, maternal age, 
and type of surgery required for hydrocephalus) and addi-
tional anomalies were recorded. Patients with hydrocephalus 
whose measurements could not be performed due to massive 
hydrocephalus were excluded. The legal parents of the pa-
tients were informed about the study. Informed consent was 
obtained from all individual participants enrolled in the study.

Measurements

Evans index, FOHR, bilateral TOD, bilateral AHW, bilateral 
ventricular index, CA, and corpus callosum length measure-
ments were performed on the same day by a radiologist expe-
rienced in brain MR imaging recommended by neurosurgical 
consultation, and by a neonatologist with TFUS. 

The Evans index is the ratio of the frontal horns’ maximum 
width to the skull’s maximum internal diameter. 

FOHR is determined by adding the largest diameter of the 
frontal and occipital horns and dividing by twice the biparietal 
diameter. 

VI is the distance between the most lateral side of the 
ventricles and the interhemispheric fissure in the coronal 
section, showing the third ventricle. 

AHW is the widest distance between the ventricular walls in 
the coronal section through the third ventricle. 

TOD is measured between the farthest posterior points of the 
thalamus and the lateral ventricle in the sagittal section, where 
the lateral ventricle is seen in its entirety. Ventricular index, 
anterior horn, and thalamo-occipital distance were measured 
independently for the right and left. 

CA was measured on coronal sections at the point where 
the vertical line descending from the anterior commissure 
and posterior commissure planes—90° from the posterior 
commissure line—crossed the lateral ventricles.

Corpus callosum length measurements were performed on 
the best midsagittal sections from the most anterior to the 
most posterior view. Figure 1 shows representative TFUS and 
cranial MRI measurements.

Image Analysis

A senior neonatologist with fifteen years of experience 
conducted cranial ultrasound measurements with a bedside 
ultrasound device (Mindray, Diagnostic Ultrasound System, 
DC-N3 PRO, 2022). Standard coronal and sagittal section 
images were collected through the anterior fontanelle. For MRI 
protocol, a Siemens Altea 1.5 tesla MR was used to obtain 
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two-dimensional T1AG, T2AG and flair sequences with 5×5 cm 
contiguous axial and sagittal scans, and 3 mm sections were 
obtained. The sonogram neonatologist and senior radiologist 
for the MRI scans were blinded to infant history and previous 
radiology reports, and both methods were measured on the 
same postnatal day.

Statistical Analysis

Descriptive statistics for continuous variables are expressed 
as the mean, standard error, minimum, and maximum values, 
while descriptive statistics for categorical variables are 
expressed as numbers and percentages. The independent 
t-test was used to compare continuous variables according 
to categorical variables. Pearson correlation coefficients were 
calculated to evaluate the relationships between continuous 
variables. For Pearson correlation coefficients, values greater 
than 0.4 and up to 0.69 were classified as low correlations, 
those between 0.7 and 0.89 were considered moderate, and 
coefficients exceeding 0.9 were interpreted as indicating 
strong to very strong correlations (28). The statistical 
significance level was set at 0.05, and SPSS (version: 26) 
statistical package software was utilized for calculations.

█   RESULTS

Sixty newborns with hydrocephalus were hospitalized in our 
hospital unit during the study period. Six patients whose 
radiologic measurements could not be performed due to 

massive hydranencephaly were excluded from the study. 
Therefore, ultimately the researchers could measure 54 
newborns with hydrocephalus. Table I provides demographic 
characteristics of the hydrocephalic newborns included in the 
study.

No statistically significant difference was found between the 
measurements in binary comparisons (Table II). After compar-
ing the correlations of brain MRI and TFUS measurements, Ev-
ans index (r=0.875, p=0.0001), FOHR (r=0.867, p=0.0001), CA 
(r=0.868, p=0.0001), bilateral VI (left r=0.937, p=0.0001; right 
r=0.944, p=0.0001), bilateral AHW (left r=0.918, p=0.0001; 
right r=0.908, p=0.0001), and bilateral TOD (left r=0.956, 
p=0.0001; right r=0.919, p=0.0001) were found to be signifi-
cantly correlated. Although the corpus callosum length was 
statistically significant between different imaging modalities, 
the correlation between the analyses was not as strong as the 
other measurements (r=0.386, p=0.004; Figure 2).

█   DISCUSSION
Transfontanelle ultrasonography is a valuable tool for detect-
ing intracranial lesions in infants. Hydrocephalus is the most 
common indication for performing the scan, as well as the 
most frequently observed abnormality (12).

In the literature, there are many studies on TFUS, including 
a large number of cases. However, there are few studies for 
newborns in which many cranial parameters are measured 
and MR-CT measurements are compared. In the study of 
neonatal neuroanatomy and disease, TFUS—which is widely 
used—offers many advantages, including the lack of ionizing 
radiation and its portability, wide availability, and low cost 
(21), and it might also provide volumetric measurements (1). 
The potential disadvantages of the technique are that it is 
operator-centered and requires a suitable acoustic window 
(11). MRI has become widespread as a promising imaging tool 
since 2007, especially for the central nervous system (22). In 
method comparison research, studies comparing USG with 
MRI (10,25)—which is often not available in every center and 
requires sedation—and CT—which carries radiation risk—
have been conducted in many diseases (16,24).

Transfontanelle ultrasonography (TFUS) was used to detect 
intraventricular hemorrhage in preterm neonates by scanning 
through the anterior fontanel in both coronal and sagittal sec-
tions at multiple time points within the first two weeks of life. 
The findings were classified based on severity, and TFUS is the 
imaging modality used for early detection and grading of in-
traventricular hemorrhage in preterm neonates (8). Cross-sec-
tional and longitudinal reference curves were generated for 
VI, AHW, and TOD according to USG measurements for ear-
ly definition and measurement of ventriculomegaly due to ei-
ther posthemorrhagic ventricular dilation or loss of periven-
tricular white matter (3). AHW is a linear measurement in a 
single plane that is easy to measure and consistent for ven-
triculomegaly with a reliable cut-off value of 6 mm, indepen-
dent of postmenstrual age (20). Likewise, although there are 
curves for AHW as defined by (5), moderate ventricular dilata-
tion should be considered above 6 mm and severe ventricu-

Figure 1: Representative images for MRI (A,B) and TFUS (C,D) 
measurements. Evans index=A/B; FOHR=A+B/2C; bilateral 
ventricular index=D; bilateral anterior horn width=E; callosal 
angle=F; bilateral thalamooccipital distance=G; corpus callosum 
length=H.

A C

B D
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mm for TOD. Male newborns had a moderately larger ventricle 
size than female newborns (3). AHW is a reliable ultrasound 
measure of ventricular enlargement that strongly correlates 
with intracranial pressure measured noninvasively. This com-
bined assessment can help in managing elevated intracranial 
pressure in preterm infants with posthemorrhagic hydroceph-
alus by guiding cerebrospinal fluid removal interventions (2).

It has been reported that shunting decisions can be made with 
curves created using VI, AHW, and FOHR (20). A recent study 
has shown that while AHW and VI only provide information 

lar dilatation above 10 mm (6). Similarly, while curves exist for 
TOD, approximately 25 mm is generally accepted as the upper 
standard limit (5). Treatment approaches for posthemorrhagic 
hydrocephalus according to baby age in weeks have recent-
ly been reported as protocols based on these measurements. 
The fact that these VI, AHW, and TOD measurements can be 
measured with both MRI and TFUS shows the importance of 
USG in the treatment approach and follow-up of the patient 
over the weeks (9). Left-right ventricular asymmetry was noted 
both at birth and at term-equivalent age. The absolute differ-
ences from side to side exceeded 3 mm for VI and AHW and 7 

Table I: Demographic Characteristics of Hydrocephalic Newborns

Variables (n=54) Mean ± Standard Error Minimum - Maximum

Gestational age (week) 37.48 ± 0.34 (27-40)

Birth weight (grams) 2985.83 ± 99.2 (900-4835)

Maternal age (years) 26.15 ± 1.03 (18-44)

n (%)

Sex
Male 29 (53.7)

Female 25 (46.3)

Type of delivery
Caesarian Section 43 (80)

Natural Delivery 11 (20)

Surgery for hydrocephalus

VPS 48 (88.9)

EVD 3 (5.6)

None 3 (5.6)

Neural tube defect 48 (88.9)

Consanguineous marriage 12 (22.2)

Mortality 3 (5.5)

VPS: Ventriculoperitoneal shunt, EVD: External ventricular drain.

Table II: Comparison of Measurements with TFUS and Cranial MRI (Mean ± Standart Error)

Measurements TFUS MRI t-test p-value

Evans index 0.43 ± 0.007 0.42 ± 0.008 0.981 0.329

Frontooccipital horn ratio 0.48 ± 0.01 0.48 ± 0.01 -0.087 0.931

Ventricular index- L (mm) 16.77 ± 0.8 16.14 ± 0.74 0.57 0.56

Ventricular index- R (mm) 16.11 ± 0.72 16.95 ± 0.81 -0.77 0.44

Anterior horn width- L (mm) 13.45 ± 0.64 13.63 ± 0.68 -0.185 0.85

Anterior horn width- R (mm) 13.23 ± 0.7 13.29 ± 0.73 -0.058 0.95

Thalamooccipital distance- L (mm) 36.23 ± 1.0 37.54 ± 0.99 -0.925 0.35

Thalamooccipital distance- R (mm) 37.81 ± 1.2 38.18 ± 1.3 -0.205 0.83

Corpus callosum length (mm) 45.09 ± 0.66 44.28 ± 0.71 0.83 0.406

Callosal angle (°) 81.45 ± 2.03 80.77 ± 1.7 0.256 0.79

TFUS: Transfontanel ultrasonography, MRI: Magnetic resonance imaging.
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tance for years. The Evans index was <0.3 and demonstrated 
a minimal age-related decline. Normative data on ventricles in 
childhood could be helpful for early diagnosis of hydroceph-
alus or follow-up of shunt treatment. As data for both sexes 
and all age groups has been provided, it offers excellent ad-
vantages for objective evaluations (27). In a recent study eval-
uating the clinical value of classification in treating children 
with suprasellar arachnoid cysts, MRI/CT with Evans index 
and FOHR measurements were used to assess hydrocepha-
lus follow-up after surgery (34).

In adult patients with hydrocephalus, it was found that sur-
gical treatment and postoperative follow-up in patients with 
idiopathic normal pressure hydrocephalus can be determined 
with CA and Evans index measurements, which are preferred 
in cranial MRI imaging because they can be performed quickly 
without the need for a radiologist (17). The callosal angle—
which has both diagnostic and prognostic value and has re-
cently been frequently used in patients with normal pressure 
hydrocephalus—significantly increased after endoscopic third 
ventriculostomy in patients with childhood hydrocephalus on 
MRI. In the same study, the Evans index, FOHR, and lateral 
ventricular horn width decreased after successful surgery (30). 
However, pre-operative radiological markers did not correlate 
with the response to shunt treatment (18). To our knowledge, 
no study in the literature has monitored hydrocephalus by CA 
measurements with TFUS.

about the anterior structures, FOHR enables evaluating both 
posterior and anterior structures together (19). FOHR was also 
measured on CT, MRI, and US scans in 44 normal children, 
including premature children aged 0–17 years, and the effect 
of age was evaluated by linear regression. A close correla-
tion has been found between ventricular/brain area ratio and 
ventricular volume, as well as between ventricular volume and 
FOHR (24). The high sensitivity (100%) of TFUS in differentiat-
ing ventriculomegaly with the FOHR clinical threshold of 0.55 
is one of the most prominent findings of the current study. A 
strong correlation has also been observed between the mean 
FOHR obtained from US and the mean FOHR obtained from 
MRI (25). It has been reported that ventricle/brain volume ra-
tios are categorized into mild and severe hydrocephalus stag-
es based on FOHR by volumetric MRI examinations (14). In a 
study among children compared with a matched age-matched 
control group, although the Evans index, Frontal horn index, 
and Bicaudate index also had statistically significant associ-
ations with ventricle size indices, FOHR recorded the most 
significant association with actual ventricle size (26). Infants 
with adverse composite outcomes had higher FOHR, and in-
creased ventricular volumes were linked to lower Bayley cog-
nitive and motor scores, regardless of group assignment (4).

A study involving 517 children aged 0–18 years and retrospec-
tive cranial MRI scans measured third and fourth ventricular 
widths and the Evans index, which has held diagnostic impor-

Figure 2: Correlations of TFUS and brain MRI measurements in hydrocephalic neonates. A, D) Bilateral ventricular index (left r=0.937, 
p=0.0001; right r=0.944, p=0. 0001); B, E) Bilateral anterior horn width (left r=0.918, p=0.0001; right r=0.908, p=0.0001); C, F) Bilateral 
thalamooccipital distance (left r=0.956, p=0.0001; right r=0.919, p=0.0001); G) Callosal angle (r=0.868, p=0.0001); H) FOHR (r=0.867, 
p=0.0001); I) Evans index (r=0.875, p=0.0001); J) Corpus callosum length (r=0.386, p=0.004).
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